矩阵约束下的频繁项集挖掘方法研究

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:w1352688
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数据挖掘中的关联分析技术旨在发现大量数据项集之间有趣的关联关系,其核心问题是寻找频繁项集。针对传统的基于矩阵的关联挖掘算法中矩阵规模和事务数据库大小相关,在处理超大型事务数据库时,仍会存在内存瓶颈的问题,提出了一个矩阵规模和事务数据库大小无关、通过矩阵约束预挖掘后验证的频繁项集发现算法。实验结果显示,该算法提高了频繁项集的挖掘速度。
其他文献
基于Hough森林的对象检测是隐式形状模型(ISM)的改进,它借助随机森林完成广义Hough变换。为了进一步提高其检测效果,充分利用训练图像中对象位置是已知的知识,改进了经典的偏移量不确定性度量方法,并优化随机森林的投票,使在Hough空间中真正对象的位置获得更多投票和更高的投票值。实验验证了该方法相比于经典的方法,具有更准确的对象检测效果。
基于乘积逻辑系统研究公式的真度函数理论。在乘积逻辑系统中给出真度函数的概念,得到真度函数的一系列性质,证明τ-完备性定理,说明τ-语构与τ-语义的和谐性。
为了降低Ka频段雨衰的影响,基于维纳预测思想建立了一种维纳雨衰预测模型,该模型通过预测某一频率点的雨衰值来控制多进制正交幅度调制(MQAM)的阶数M和发射功率,从而降低雨衰的
针对PSO算法晚期收敛速度慢、求解精度差的缺点,提出了一种改进优化算法——将粒子群算法(Particle Swarm Optimization,PSO)与禁忌搜索算法(Tabu Search,TS)结合起来解决基于三
聚类可以看成是寻找K个最佳聚类中心的过程。把一组聚类中心视为一个粒子,把总类内离散度和的倒数看成优化函数,采用变异概率作为粒子变异的条件,从而提高了粒子群的探索能力
信息图的构造对许多机器学习任务来说是至关重要的。基于稀疏表示理论,提出了一种有向非负l1图。在构造此图的过程中,先将每个样例表示成其他样例的非负线性组合,再通过求解l