论文部分内容阅读
针对标准粒子群算法易陷入局部最优、收敛过早的缺陷,提出了一种模糊自修正粒子群算法。通过利用模糊推理机制建立了粒子适应度值隶属度函数,在每次寻优过程中,使得各粒子根据自身当前适应度隶属度函数值来修正惯性权重的取值,而不是把惯性权重作为全局变量,对同一代粒子使用相同的惯性权重;这充分考虑了各粒子自身的性能,可以进一步改善早熟的缺陷,增强全局搜索能力,从而可以获取更好的目标值。将该算法用于求解电力系统经济负荷分配问题,兼顾考虑了燃料成本和环境成本;在求解此问题时,为了更精确地处理功率平衡约束,根据寻优过程中等式