论文部分内容阅读
现有的盲源分离算法不适合于数据的实时处理,并且算法性能依赖于步长的选择。提出一种基于信息最大化的自适应变步长盲源分离算法,采用基于估计函数的变步长算法,降低了盲源分离算法性能对步长的依赖性,并且采用自适应处理形式,适合数据的实时处理。最后将其应用于声音信号的盲分离,在选择小的步长参数的情况下,原有算法和文中新算法都取得了良好的分离效果;在选择较大的步长参数的情况下,新算法优于传统算法。