论文部分内容阅读
为了提高电子鼻对混合气体的识别率,针对气体传感器阵列的交叉敏感特性,探讨了在电子鼻系统中基于独立分量分析(ICA)算法与BP神经网络相结合进行模式识别的可行性。并对4个气体传感器组成的电子鼻对4种气体混合物所测得的原始数据进行处理,结果表明:ICA算法对数据进行有效预分类,减少了样本之间的相关性,将生成的新样本作为BP网络的输入,使网络结构简化,在保证一定正确率的前提下,大大提高网络的学习速度。利用该方法可以提高电子鼻识别混合气体的准确率。