论文部分内容阅读
测井解释过程中的油气水层识别实质是一个模式识别问题。基于统计学习理论发展起来的新一代小样本学习算法一支持向量机,是至今模式识别问题强有力的解决方法之一。依据测井所得到的小样本、不适定性等数据信息进行网格搜索及交叉验证对目标函数寻优,找到最佳参数建立了最小二乘支持向量机分类器模型;针对现有方法在解决油气水层识别问题中的不足,提出了基于最小二乘支持向量机的油气水层识别方法,并将此方法应用于大庆油田某油藏的油气水层识别。结果表明,此方法较人工神经网络和标准支持向量机方法具有更快的运算速度和准确率,是一种值得进一