论文部分内容阅读
In this study,mesoporous bioactive glass particles (MBGs) are incorporated into poly(lactic-co-glycolic acid) (PLGA) to fabricate highly interconnected macroporous composite scaffolds with enhanced mechanical and biological properties via a developed supercritical carbon dioxide (scCO2) foaming method.Scaffolds show favorable highly interconnected and macroporous structure through a high foaming pressure and long venting time foaming strategy.Specifically,scaffolds with porosity from 73% to 85%,pore size from 120 μm to 320 μm and interconnectivity of over 95% are controllably fabricated at MBG content from 0 wt% to 20 wt%.In comparison with neat PLGA scaffolds,composite scaffolds perform improved strength (up to 1.5 folds) and Young's modulus (up to 3 folds).The interconnected macroporous structure is beneficial to the ingrowth of cells.More importantly,composite scaffolds also provide a more promising microenvironment for cellular proliferation and adhesion with the release of bioactive ions.Hopefully,MBG/PLGA scaffolds developed by the green foaming strategy in this work show promising morphological,mechanical and biological features for tissue regeneration.