论文部分内容阅读
由于多重反射和散射,高光谱图像中的混合像元实际上是非线性光谱混合。传统的光谱解混算法是以线性光谱混合模型为基础,因此解混精度不高。本文在光谱非线性混合模型的基础上,提出一种将等距映射与空间信息结合的非线性光谱解混算法。该算法通过等距映射算法将原始高光谱数据非线性降维到低维空间,并结合空间信息实现端元提取。得到的端元采用全约束的最小二乘法计算相应丰度。真实高光谱遥感数据实验结果表明,采用该算法得到的结果优于N-FINDR算法和基于测地线距离的最大单形体体积(GSVM)算法。