论文部分内容阅读
针对传统木材纹理分类的准确率低且难度大的问题,依据LBP(局部二值)算子和ADABOOST(自适应增强)算法理论,提出了LBP-ADABOOST模型对木材纹理进行识别分类.通过均匀旋转不变特性与原始LBP算子相融合,提取纹理的特征值,结合自适应增强算法,从而训练得到每类纹理所对应的分类器模型参数,构造分类器,实现对木材纹理准确高效分类.实验结果表明相比于BP神经网络,SVM支持向量机等分类算法,该模型的实验结果误差率为4%左右,准确率高,实用性强.