论文部分内容阅读
提出一种适用于在郭守敬望远镜海量光谱中自动、快速筛选激变变星的方法。利用已证认的激变变星光谱作为模板,通过随机森林分类训练,得到一个分类模型,该模型给出了各个波长对应流量的重要性排序,可根据该排序进行降维并用于激变变星判别,结果作为反馈进一步丰富模板库。实验中共发现了16个新的激变变星候选体,表明了该方法的可行性。