论文部分内容阅读
文章首先介绍了用于空间合作卫星最后逼近段交会对接任务的仿真平台,描述了文中使用的姿态运动学方程和视觉成像算法。为了充分利用陀螺仪和视觉系统进行姿态确定,采用传统的扩展卡尔曼滤波(EKF)对两种测量数据进行融合,实现对姿态和陀螺仪漂移的估计。为了克服EKF调节参数过多和计算过程需要求逆的问题,设计了一种新的非线性观测器。最后,通过在对接仿真平台上进行试验,对比验证了非线性滤波器的有效性以及实用性。
Firstly, the article introduces the simulation platform for the rendezvous and docking task of the final approach segment of space cooperation satellites, and describes the attitude kinematics equations and visual imaging algorithms used in this paper. In order to make full use of the gyroscope and vision system for attitude determination, traditional Extended Kalman Filter (EKF) is used to fuse the two kinds of measurement data to estimate the pose and gyro drift. In order to overcome the problem of too many adjustment parameters of EKF and inverse calculation of the calculation process, a new nonlinear observer is designed. Finally, the validity and practicability of the nonlinear filter are verified through the experiments on the docking simulation platform.