Intelligent Prescription?Generating Models of Traditional Chinese Medicine Based on Deep Learning

来源 :世界中医药杂志(英文版) | 被引量 : 0次 | 上传用户:ksxxccna
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Objective: This study aimed to construct an intelligent prescription?generating (IPG) model based on deep?learning natural language processing (NLP) technology for multiple prescriptions in Chinese medicine. Materials and Methods: We selected the Treatise on Febrile Diseases and the Synopsis of Golden Chamber as basic datasets with EDA data augmentation, and the Yellow Emperor\'s Canon of Internal Medicine, the Classic of the Miraculous Pivot, and the Classic on Medical Problems as supplementary datasets for fine?tuning. We selected the word?embedding model based on the Imperial Collection of Four, the bidirectional encoder representations from transformers (BERT) model based on the Chinese Wikipedia, and the robustly optimized BERT approach (RoBERTa) model based on the Chinese Wikipedia and a general database. In addition, the BERT model was fine?tuned using the supplementary datasets to generate a Traditional Chinese Medicine?BERT model. Multiple IPG models were constructed based on the pretraining strategy and experiments were performed. Metrics of precision, recall, and F1?score were used to assess the model performance. Based on the trained models, we extracted and visualized the semantic features of some typical texts from treatise on febrile diseases and investigated the patterns. Results: Among all the trained models, the RoBERTa?large model performed the best, with a test set precision of 92.22%, recall of 86.71%, and F1?score of 89.38% and 10?fold cross?validation precision of 94.5% ± 2.5%, recall of 90.47% ± 4.1%, and F1?score of 92.38% ± 2.8%. The semantic feature extraction results based on this model showed that the model was intelligently stratified based on different meanings such that the within?layer\'s patterns showed the associations of symptom–symptoms, disease–symptoms, and symptom–punctuations, while the between?layer\'s patterns showed a progressive or dynamic symptom and disease transformation. Conclusions: Deep?learning?based NLP technology significantly improves the performance of IPG model. In addition, NLP?based semantic feature extraction may be vital to further investigate the ancient Chinese medicine texts.
其他文献
现代种业是引领产业振兴的战略性产业。近年来,济南市围绕农作物种子、蔬菜种苗、畜禽良种,通过政策引领、科技创新、良种展示、宣传推广,加快推进现代种业振兴,以建设良种研发生产核心地、种业龙头聚集地、世界良种交易集散地为重点,打造“中国北方国际种业之都”。
保护森林生物多样性是环境与生物多样性保护最重要的部分之一,森林生物多样性可持续发展已然成为人与自然和谐共生的课题之一。本文通过分析松阳县森林生物多样性保护工作,结合松阳县森林生物基本状况,针对松阳县森林生物多样性保护方面的工作提出相关对策建议,旨在为松阳县森林生物多样性可持续发展提供借鉴参考。
文章简要概述了营养平衡诊断技术的理论基础、技术方法及应用现状,对正确指导农作物营养平衡施肥及专用肥的生产具有重要的理论和实践意义。
近年来,滕州大力发展现代种业,坚持引进和繁育并举,良种覆盖率和良种贡献率逐年提升。为进一步加快滕州市现代种业的持续发展,滕州市进行了专题调研,笔者系统分析了滕州市种业发展现状、采取的措施和存在的问题,提出了下一步发展对策,为当地现代种业发展提供参考。
济宁市是农业大市,随着乡村产业的快速发展,反映出的问题也日益突出,其中农户收益低、新型农业经营主体竞争力不强、产业总体效益差等已成为制约济宁市乡村产业振兴的发展瓶颈。为破解这些难题,积极探索济宁市乡村产业高质量发展的实施路径,深入分析了先进地市乡村产业发展的好经验、好做法,对济宁市乡村产业发展现状及存在的问题短板进行了系统分析,并提出了建议,以期为济宁市乡村产业发展提供参考。
休闲农业发展是实现农业增效和农民增收的重要手段,也是实现乡村振兴的重要举措。浙江省休闲农业发展处于全国领先水平,在乡村振兴的时代背景下,笔者针对其发展成效和不足,从政府部门层面到经营主体层面提出能够促进浙江休闲农业可持续发展的对策。
对宁夏3个品种大枣中的环磷酸腺苷进行了提取与定量检测分析。采用甲醇-0.05 mol/L磷酸二氢钾溶液超声提取大枣中的环磷酸腺苷。选用高效液相色谱-紫外检测器、Agilent-ZORBAX SB-C18色谱柱,以甲醇-0.05 mol/L磷酸二氢钾溶液为流动相进行等度洗脱,在254 nm波长处对环磷酸腺苷进行定量检测。结果表明,环磷酸腺苷在浓度为1.0~100 mg/L范围内,与响应值呈线性关系,获得标准曲线方程,相关系数为0.9999;环磷酸腺苷的平均回收率在82%~92%,RSD值在0.5%~2.4%
分析了我国小麦锈病防治用药的登记数量、毒性级别、产品剂型及变化趋势,重点介绍了我国防治小麦锈病的主要农药产品,结合田间实际生产需求进行了分析,并提出相关建议,以期为我国小麦锈病防治用药的选取和市场的发展走势提供参考。
随着城镇化进程的加快,农村大量劳动力进入城镇就业,农业兼业化、农民老龄化、农村空心化现象日益严重,“未来谁来种地、怎样种好地”问题更加突出.近年来,城乡一体化和现代
Background: Inflammation and oxidation stress are key factors in the mechanism of acute lung injury (ALI). Therefore, suppression of the inflammatory response a