论文部分内容阅读
在分析煤壳质组显微组分图像特点的基础上,鉴于其纹理及方向信息特征差异,提出一种基于轮廓波变换(Contourlet)与超限学习机的煤壳质组显微组分自动分类方法。首先,运用Contourlet变换对煤壳质组显微图像进行多尺度多方向分解,提取各子带的统计特征量组成特征向量集;再构建超限学习机分类器对壳质组各显微组分进行分类。实验结果表明:与其他用于描述纹理的同类特征提取方法相比,采用本文方法提取的特征量训练的分类器,在分类效果上具有明显的优势,其分类准确率可达97.64%;与支持向量机分类结果相比,超限