论文部分内容阅读
[摘要] LTE是最接近4G的技术,被称为3.9G。目前LTE已取得重要进展,无论是技术发展,市场需求,还是运营商的积极性,LTE的实际进展都比业界预期更乐观。已有管制机构发放LTE牌照,全球范围内的运营商都在加快LTE的部署步伐,设备商也在加紧相关设备研发,3G向LTE演进已经成为不可逆转的趋势。文中介绍了LTE的概念、分析了LTE的技术特征、阐述了LTE网络结构与核心技术,并展望了未来LTE的发展前景。
[关键词] LTE 3G Node B 无线
一、LTE的概念
LTE(Long Term Evolution,长期演进)项目是3G的演进,始于2004年3GPP的多伦多会议。LTE并非人们普遍误解的4G技术,而是3G与4G技术之间的一个过渡,是3.9G的全球标准,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率。改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
二、LTE的技术特征
3GPP从“系统性能要求”、“网络的部署场景”、“网络架构”、“业务支持能力”等方面对LTE进行了详细的描述。与3G相比,LTE具有如下技术特征:
1.通信速率有了提高,下行峰值速率为100Mbps、上行为50Mbps。
2.提高了频谱效率,下行链路5(bit/s)/Hz,(3-4倍于R6 HSDPA);上行链路2.5(bit/s)/Hz,是R6 HSU-PA2-3倍。
3.以分组域业务为主要目标,系统在整体架构上将基于分组交换。
4.QoS保证,通过系统设计和严格的QoS机制,保证实时业务(如VoIP)的服务质量。
5.系统部署灵活,能够支持1.25MHz-20MHz间的多种系统带宽,并支持“paired”和“unpaired”的频谱分配。保证了将来在系统部署上的灵活性。
6.降低无线网络时延:子帧长度0.5ms和0.675ms,解决了向下兼容的问题并降低了网络时延,时延可达U-plan<5ms,C-plan<100ms。
7.增加了小区边界比特速率,在保持目前基站位置不变的情况下增加小区边界比特速率。如MBMS(多媒体广播和组播业务)在小区边界可提供1bit/s/Hz的数据速率。
8.强调向下兼容,支持已有的3G系统和非3GPP规范系统的协同运作。
与3G相比,LTE更具技术优势,具体体现在:高数据速率、分组传送、延迟降低、广域覆盖和向下兼容。
三、LTE的网络结构与核心技术
3GPP对LTE项目的工作大体分为两个时间段:2005年3月到2006年6月为SI(Study Item)阶段,完成可行性研究报告;2006年6月到2007年6月为WI(Work Item)阶段,完成核心技术的规范工作。在2007年中期完成LTE相關标准制定(3GPP R7),在2008年或2009年推出商用产品。就目前的进展来看,发展比计划滞后了大概3个月,但经过3GPP组织的努力,LTE的系统框架大部分已经完成。
LTE采用由Node B构成的单层结构,这种结构有利于简化网络和减小延迟,实现了低时延,低复杂度和低成本的要求。与传统的3GPP接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的变革,逐步趋近于典型的IP宽带网结构。3GPP初步确定LTE的架构如图所示,也叫演进型UTRAN结构(E-UTRAN)。接入网主要由演进型Node B(eNB)和接入网关(aGW)两部分构成。aGW是一个边界节点,若将其视为核心网的一部分,则接入网主要由eNB一层构成。eNB不仅具有原来Node B的功能外,还能完成原来RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM 等。Node B和Node B之间将采用网格(Mesh)方式直接互连,这也是对原有UTRAN结构的重大修改。
LTE不仅通过简化结构,还采用以下几个关键技术来实现其优异性能。
1.传输技术与多址技术:3GPP选择了大多数公司支持的方案,即下行OFDM,上行SC-FDMA。大多数公司支持采用“频域”方法来生成上行SC-FD-MA信号。这种技术是在OFDM的IFFT调制之前对信号进行DFT扩展,这样系统发射的是时域信号,从而可以避免OFDM系统发送频域信号带来的PAPR问题。
2.宏分集:由于存在难以解决的“同步问题”,LTE对单播(uni-CAst)业务不采用下行宏分集。至于对频率要求稍低的多小区广播业务,可采用较大的循环前缀(CP)来解决小区之间的同步问题。考虑到实现网络结构“扁平化”、“分散化”,LTE不采用上行宏分集技术。
3.调制与编码:LTE下行主要采用OPSK、16QAM、64QAM三种调制方式。上行主要采用位移BPSK、OPSK、8PSK和16QAM。信道编码LTE主要考虑Turbo码,但若能获得明显的增益,也将考虑其他编码方式,如LDPC码。
4.多天线技术:MIMO技术是LTE最核心的技术,它是提高传输率的主要手段,LTE系统将设计可以适应宏小区、微小区、热点等各种环境的MIMO技术。LTE已确定MIMO天线个数的基本配置是下行2。
四、LTE的发展前景
目前,业界公认的移动无线技术演进路径主要有三条:一是WCDMA和TD-SCDMA,均从HSPA演进至HSPA+,进而到LTE;二是CDMA2000沿着EV-DORev.0/Rev.A/Rev.B,最终到UMB;三是802.16m的WiMAX路线。那么作为4G移动无线技术演进标准之一的LTE在未来的技术标准竞争中发展前景如何?
虽然这几年WiMAX在Intel的扶持下广受到注意,但在经过多方开发后成果不彰,目前仅在新兴市场上较受到瞩目;尽管UMB最高数据传输速率可达到280Mbps,但目前没有任何一家运营商表示测试该项技术,其市场需求几乎为零。在各主要电信营运商大力支持下,LTE已成为市场最看好的4G技术。展望未来,研究机构ABI Research预估到2013年时,全球使用LTE技术的手机用户数量将达到3200万户,其中又以亚太地区的用户数增速最快。预估到2013年,亚太地区的LTE用户数将达到1200万户;其余的2000万名用户中,60%将分布在西欧,40%将位于北美地区。在由运营商取代设备商成为技术风向标的4G时代,运营商对于LTE的青睐,无疑指明了LTE发展的美好前景。未来,将会有更多的移动运营商选择LTE,也将引发更多的设备商积极投身LTE的研发,形成一个良性运转的产业链,促使LTE不断进步成熟、实现商用。从发展态势看,LTE很有可能超越UMB以及WiMAX而在3G向4G的演进中成为主流。
作者简介:
孙开荣(198002),男 ,安徽砀山人,助工,研究方向:通信核心网。
[关键词] LTE 3G Node B 无线
一、LTE的概念
LTE(Long Term Evolution,长期演进)项目是3G的演进,始于2004年3GPP的多伦多会议。LTE并非人们普遍误解的4G技术,而是3G与4G技术之间的一个过渡,是3.9G的全球标准,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率。改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
二、LTE的技术特征
3GPP从“系统性能要求”、“网络的部署场景”、“网络架构”、“业务支持能力”等方面对LTE进行了详细的描述。与3G相比,LTE具有如下技术特征:
1.通信速率有了提高,下行峰值速率为100Mbps、上行为50Mbps。
2.提高了频谱效率,下行链路5(bit/s)/Hz,(3-4倍于R6 HSDPA);上行链路2.5(bit/s)/Hz,是R6 HSU-PA2-3倍。
3.以分组域业务为主要目标,系统在整体架构上将基于分组交换。
4.QoS保证,通过系统设计和严格的QoS机制,保证实时业务(如VoIP)的服务质量。
5.系统部署灵活,能够支持1.25MHz-20MHz间的多种系统带宽,并支持“paired”和“unpaired”的频谱分配。保证了将来在系统部署上的灵活性。
6.降低无线网络时延:子帧长度0.5ms和0.675ms,解决了向下兼容的问题并降低了网络时延,时延可达U-plan<5ms,C-plan<100ms。
7.增加了小区边界比特速率,在保持目前基站位置不变的情况下增加小区边界比特速率。如MBMS(多媒体广播和组播业务)在小区边界可提供1bit/s/Hz的数据速率。
8.强调向下兼容,支持已有的3G系统和非3GPP规范系统的协同运作。
与3G相比,LTE更具技术优势,具体体现在:高数据速率、分组传送、延迟降低、广域覆盖和向下兼容。
三、LTE的网络结构与核心技术
3GPP对LTE项目的工作大体分为两个时间段:2005年3月到2006年6月为SI(Study Item)阶段,完成可行性研究报告;2006年6月到2007年6月为WI(Work Item)阶段,完成核心技术的规范工作。在2007年中期完成LTE相關标准制定(3GPP R7),在2008年或2009年推出商用产品。就目前的进展来看,发展比计划滞后了大概3个月,但经过3GPP组织的努力,LTE的系统框架大部分已经完成。
LTE采用由Node B构成的单层结构,这种结构有利于简化网络和减小延迟,实现了低时延,低复杂度和低成本的要求。与传统的3GPP接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的变革,逐步趋近于典型的IP宽带网结构。3GPP初步确定LTE的架构如图所示,也叫演进型UTRAN结构(E-UTRAN)。接入网主要由演进型Node B(eNB)和接入网关(aGW)两部分构成。aGW是一个边界节点,若将其视为核心网的一部分,则接入网主要由eNB一层构成。eNB不仅具有原来Node B的功能外,还能完成原来RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM 等。Node B和Node B之间将采用网格(Mesh)方式直接互连,这也是对原有UTRAN结构的重大修改。
LTE不仅通过简化结构,还采用以下几个关键技术来实现其优异性能。
1.传输技术与多址技术:3GPP选择了大多数公司支持的方案,即下行OFDM,上行SC-FDMA。大多数公司支持采用“频域”方法来生成上行SC-FD-MA信号。这种技术是在OFDM的IFFT调制之前对信号进行DFT扩展,这样系统发射的是时域信号,从而可以避免OFDM系统发送频域信号带来的PAPR问题。
2.宏分集:由于存在难以解决的“同步问题”,LTE对单播(uni-CAst)业务不采用下行宏分集。至于对频率要求稍低的多小区广播业务,可采用较大的循环前缀(CP)来解决小区之间的同步问题。考虑到实现网络结构“扁平化”、“分散化”,LTE不采用上行宏分集技术。
3.调制与编码:LTE下行主要采用OPSK、16QAM、64QAM三种调制方式。上行主要采用位移BPSK、OPSK、8PSK和16QAM。信道编码LTE主要考虑Turbo码,但若能获得明显的增益,也将考虑其他编码方式,如LDPC码。
4.多天线技术:MIMO技术是LTE最核心的技术,它是提高传输率的主要手段,LTE系统将设计可以适应宏小区、微小区、热点等各种环境的MIMO技术。LTE已确定MIMO天线个数的基本配置是下行2。
四、LTE的发展前景
目前,业界公认的移动无线技术演进路径主要有三条:一是WCDMA和TD-SCDMA,均从HSPA演进至HSPA+,进而到LTE;二是CDMA2000沿着EV-DORev.0/Rev.A/Rev.B,最终到UMB;三是802.16m的WiMAX路线。那么作为4G移动无线技术演进标准之一的LTE在未来的技术标准竞争中发展前景如何?
虽然这几年WiMAX在Intel的扶持下广受到注意,但在经过多方开发后成果不彰,目前仅在新兴市场上较受到瞩目;尽管UMB最高数据传输速率可达到280Mbps,但目前没有任何一家运营商表示测试该项技术,其市场需求几乎为零。在各主要电信营运商大力支持下,LTE已成为市场最看好的4G技术。展望未来,研究机构ABI Research预估到2013年时,全球使用LTE技术的手机用户数量将达到3200万户,其中又以亚太地区的用户数增速最快。预估到2013年,亚太地区的LTE用户数将达到1200万户;其余的2000万名用户中,60%将分布在西欧,40%将位于北美地区。在由运营商取代设备商成为技术风向标的4G时代,运营商对于LTE的青睐,无疑指明了LTE发展的美好前景。未来,将会有更多的移动运营商选择LTE,也将引发更多的设备商积极投身LTE的研发,形成一个良性运转的产业链,促使LTE不断进步成熟、实现商用。从发展态势看,LTE很有可能超越UMB以及WiMAX而在3G向4G的演进中成为主流。
作者简介:
孙开荣(198002),男 ,安徽砀山人,助工,研究方向:通信核心网。