论文部分内容阅读
Brassica campestris male fertility 19 (BcMF19;GenBank accession number GQ902048.1), a gene that is specially expressed in tapetum cells and microspores during anther development in B. campestris ssp. chinensis, which is learned from the previous in situ hybridization study. In the present study, we constructed antisense-silenced plants of BcMF19 using B. campestris ssp. chinensis to validate this prediction. The morphology of the pistils, long anthers, and short anthers was signiifcantly affected in 35sbcmf19 compared with the control samples. 4′-6-Diamidino-2-phenylindole staining revealed that two generative nuclei and one large vegetative nucleus were not affected in the mutant compared with control. Statistical analysis of Alexander’s staining results showed that 96% of the control pollen grains had vitality, whereas only 86% of the mutant pollen grains did. Under scanning electron microscopy, the mutant demonstrated numerous abnormal pollen grains and resembled dried persimmon. The frequency of normal pollen grains was approximately 18%. Under transmission electron microscopy, the pollen intine during the binucleate and mature pollen stages in 35sbcmf19 exhibited abnormal thickening, especially at the germinal furrows, compared with control. In vitro pollen germination test showed that the tips of the mutant pollen tubes transformed into globular alveoli and stopped growing compared with control. On the other hand, in vivo pollen germination test suggested that BcMF19 affected the pollen tube extension in the pistil. These ifndings indicate that BcMF19 is essential to the pollen development and pollen tube extension of B. campestris ssp. chinensis.