论文部分内容阅读
为实现对城市轨道交通突发大客流的及时预警,提出一种基于自动售检票数据的客流异常状态识别方法.首先,确定符合客流时变特性的滑动时间窗口长度以适应动态的数据环境;其次,建立深度置信网络模型以提取窗口内待检样本的客流特征,并实现样本特征模式的自适应划分;最后,将待检样本和相同模式的历史样本映射至多维特征空间,进行基于局部异常因子的客流异常状态识别.通过广州地铁的案例分析,结果表明:该方法的模式划分精度为92.5%,异常识别误检率和准确率分别为3.98%和91.9%,识别效果与异常的形式和程度相关,且受识别