论文部分内容阅读
目的 针对大型图像检索领域中,复杂图像中SIFT特征描述子的冗余和高维问题,提出了一种基于字典重建和空间分布关系约束的特征选择的方法,来消除冗余特征并保留最具表现力的、保留原始空间结构性的SIFT特征描述子。方法 首先,实验发现了特征选择和字典学习方法在稀疏表示方面的内在联系,将特征选择问题转化为字典重构任务;其次,在SIFT特征选择问题中,为了保证特征空间中特征的鲁棒性,设计了新型的字典学习模型,并采用模拟退火算法进行迭代求解;最后,在字典学习的过程中,加入熵理论来约束特征的空间分布,使学习到