论文部分内容阅读
摘要:【目的】研究我國农产品价格与居民消费价格指数(CPI)的动态影响关系,为合理调控农产品价格和促进市场经济稳定发展提供依据。【方法】基于2010年1月—2019年5月的CPI及粳稻、玉米和大豆3种农产品市场价格指数,构建SVAR模型,采用协整检验、Granger因果检验、脉冲响应函数、方差分解方法,探究农产品价格指数与CPI的内在关系。【结果】描述性统计结果表明,农产品价格方差由大到小依次是玉米(9.274)、粳稻(7.328)、大豆(4.252),说明玉米价格波动最大,其次是粳稻价格,大豆价格较稳定。相关性分析结果表明,CPI分别受粳稻价格指数、玉米价格指数和大豆价格指数显著性正影响(P<0.01),相关系数分别为0.747、0.546和0.681。粳稻、玉米和大豆的价格指数与CPI均存在Granger因果关系和长期协整关系。粳稻、玉米和大豆的价格指数对CPI的长期影响系数分别为-0.192、0.069和-0.125,调整速度分别为-0.202、0.003和-0.258,短期影响系数分别为-0.100、0.004和-0.010,表明农产品价格与CPI偏离长期均衡状态时,通过误差修正作用进行有效调整。由脉冲响应函数结果可知,粳稻价格指数和大豆价格指数受外部冲击给CPI短期内带来正影响,玉米价格指数受外部冲击给CPI短期内带来负影响;方差分解结果表明,玉米价格指数对CPI波动产生正向的长期均衡作用,而粳稻价格指数和大豆价格指数对CPI产生负的长期均衡影响,但效果并不显著。【建议】生产者应以建设农业现代化为导向,对农产品进行系统的科学管制,打造产业化、规模化、数字化农业;政府应参与宏观调控农业贸易中的价格波动,制定战略性生产规划,提高定价水平、市场资源配置和整合能力。
关键词: SVAR模型;农产品价格指数;波动;动态关系;冲击
Abstract:【Objective】This paper studied the dynamic relationship between China’s agricultural product prices and consumer price index(CPI) to provide a basis for rationally regulating agricultural product prices and promoting the stable development of the market economy. 【Method】Based on the CPI and the market price indexes of three agricultural pro-ducts such as Japonica rice, corn and soybean from January, 2010 to May, 2019, the SVAR model was constructed. The cointegration test, Granger causality test, impulse response function and variance decomposition method were used to explore the internal relationship between the agricultural product price index and CPI. 【Result】The descriptive statistical results showed that the variances of agricultural product prices from large to small were corn(9.274), Japonica rice (7.328), soybean (4.252). It showed that the price of corn was the most volatile, followed by the price of Japonica rice, and the price of soybean was relatively stable. The result of correlation analysis showed that CPI was extremely positively correlated with the price index of Japonica rice, corn and soybean(P<0.01). The correlation coefficients were 0.747, 0.546 and 0.681 respectively. There were Granger causality and long-term cointegration relationship between the price indexes of three agricultural products and CPI. The long-term influence coefficients of the price indexes of Japonica rice, corn and soybean on CPI were -0.192, 0.069 and -0.125. The adjustment speeds were -0.202, 0.003 and -0.258. The short-term impact coefficients were -0.100, 0.004 and -0.010. It showed that when the price of agricultural products deviated from the long-term equilibrium state of CPI, it was effectively adjusted through the error correction. The result of impulse response function showed that the external impact on the Japonica rice price index and soybean price index brought positive impact on CPI in the short term, while the external shocks of the price index of corn had a negative impact on the short-term CPI. The results of variance decomposition showed that corn price index had positive long-term equilibrium effect on CPI fluctuation, while Japonica rice price index and soybean price index had negative long-term equilibrium effect on CPI, but the effect was not significant. 【Suggestion】Producers should take the construction of agricultural modernization as the guidance, carry out systematic and scientific control on agricultural products, create industrialized, large-scale and digital agriculture. The government should participate in macro-control of price fluctuations in agricultural trade, formulate strategic production plans, improve pricing level, market resource allocation and integration capabilities. 2. 2. 4 方差分解結果分析 表7显示的是CPI变动方差由CPI、粳稻、玉米和大豆价格指数变动导致的部分,表中显示从第1期开始,农产品价格对CPI的影响作用日益增加。表7方差分解结果表明的是,构造以CPI和粳稻、玉米、大豆价格指数分别作为被解释变量构造的方程,所产生的新息对CPI各期预测标准差产生影响的贡献度,每一行百分比之和为100%。以第3期为例,CPI的预测标准差为0.502,其中93.976%由CPI的一阶差分残差冲击所致,2.104%由粳稻价格指数的残差冲击作用所致,3.162%是由玉米价格指数的残差冲击所致,其余0.758%由大豆价格指数残差冲击所致。不考虑CPI自身的贡献率,玉米价格指数对CPI的贡献程度逐渐增加,即由玉米提供给CPI变动解释的部分在第10期达峰值(3.451%),其次是粳稻(2.119%),大豆的贡献率最小(0.775%)。
3 讨论
农产品市场的波动特征可能随市场形势而发生变化,因此需要将波动的结构性转化为普适化的情形。本研究采用SVAR模型分析我国粳稻、玉米和大豆3种农产品与CPI间的动态关系,研究结果表明,格兰杰因果关系、长期协整关系均存在于粳稻、玉米、大豆价格指数与CPI间;由于市场化程度和政府保护政策等原因,粳稻和大豆价格受外部冲击给CPI带来不同程度的正向影响,玉米价格受外部冲击给CPI带来负影响;但是农产品的现货价格指数和CPI不会背离长期均衡点,误差修正机制将会自主发挥作用将其恢复至原来的平衡状态,而农产品价格对CPI的助推与抑制作用并不十分显著。上述结论与郭震(2012)、游凤(2015)所得出的粮食价格、农产品价格对通货膨胀影响有限,其不是通货膨胀主要原因的结论基本符合。由方差分解结果可知,在研究样本中造成CPI波动的因素,其本身贡献率占最大比重为93.98%,而粳稻、玉米和大豆价格对CPI的贡献率微乎其微。这一结论与广西壮族自治区物价局课题组(2015)所得结论不谋而合,均认为CPI在短时间内受到来自农产品销售价格的影响较弱,且影响力会随着时间的推移而逐渐稳定。石自忠等(2016)则进一步研究得出畜产品价格与CPI相关程度更为密切,而粮食价格与CPI关联程度相较而言稍微弱。
本研究基于农产品价格这一热点话题,选取2010年1月—2019年5月国家统计局编制的农产品集贸市场价格指数,用粳稻、玉米、大豆3种典型农产品的月度价格数据,构造添加约束的SVAR模型,从动态影响关系方面着手分析我国农产品价格波动与CPI的关联程度,体现了本研究的科学性。但存在待改进之处,如选取农产品的覆盖面不够广泛,说服力有待提升,样本区间长度可向更早的时间方向扩展。
4 建议
综上所述,在深入挖掘出我国农产品价格的异常波动与CPI之间动态关系的基础上,为促进物价总水平持续发展,提出如下建议:
4. 1 生产者进行科学化管制,加速农产品价格与CPI长期均衡的误差修正
根据本研究结论,农产品价格与CPI间存在的长期均衡性仅依靠误差修正机制调节是非常缓慢的。因此需要人为助力来维护农产品价格与CPI的稳态,最优方案是生产者对农产品进行产业化、规模化、数字化管理。通过系统的科学管制,争取在5G来临前,生产者们也能顺利搭上数字农业这班“顺风车”。加大对建设农业农村现代化的投资力度,也将极大程度地调动、提高生产者科学种植和科学养殖的积极性。由于环境气候等因素的变化,市场大环境供求关系日新月异,从而导致豆类、玉米等农作物价格紧张,牵动了以猪肉、家禽为代表的生鲜产品生产成本快速上升。因此生产者需要树立科学的方法意识,通过智能手段及时获取讯息,关注气候环境变化确保粮食安全。为防止因小农经济的零散性及对农产品通胀预期的谬误而导致的农产品价格浮动情况发生,可以建立专业的农业组织将分散的农户规模集中,以降低生产者对市场波动自我调节的盲目性。生产者还可以与大企业进行协同合作,分散承担风险,达成互惠互利的局面。
4. 2 政府制定战略性生产规划,减小外部冲击对CPI的影响
不同种类的农产品价格受外部冲击后,对短期CPI产生的影响各有差异,针对此结论,本研究也提出相关建议。从时间范畴来审视,在短期内,当农产品价格动荡时,政府应当通过重新分配进一步加速扶贫进程,从长远来看应进行战略性的生产规划,以遏制价格波动对市场造成的影响。政府宏观调控农业贸易中的价格波动,可考虑下列措施:改进农产品价格信息服务系统,消除因信息不对称、不及时而导致的农产品价格传导迟滞现象;将大数据、云存储等应用于农产品市场风险监控和追溯,提高农业生产、加工、产品销售整个产业链的深度集成,提高信息传输的及时性和管理决策的合理性;加强对违法行为的监管和举报,最大限度地打击故意提价以从中赚取超额利润,而导致价格波动、农民个人利益遭受侵害的违法犯罪行为。
因此,正确认识并利用农产品价格对CPI的误差修正作用,削弱外部冲击对CPI产生的影响,促进我国农产品价格与居民消费价格指数持续、平稳发展,不仅需要国家政策的强力支持,也需要每个公民提升监管意识来维系,缺一不可。个人秉承科学生产观念,全面提升农业效率;国家高度重视现代农业产业,巩固农产品价格稳定性,共同努力在农业领域和农村地区创造新的贸易形式,同时建立主体多元、要素集聚的综合体系。
参考文献:
陈晓坤,张俊飚,李鹏. 2013. 我国农产品价格波动与通货膨胀问题研究历史回顾及文献综述——基于国内1978—2012年的文献[J]. 中国农业大学学报,18(4): 238-244. [Chen X K,Zhang J B,Li P. 2013. History retrospect and literature review of our country agricultural product prices fluctuation and inflation problem research: Based on the domestic literatures from 1978-2012[J]. Journal of China Agricultural University,18(4): 238-244.] 程國强,胡冰川,徐雪高. 2008. 新一轮农产品价格上涨的影响分析[J]. 管理世界,(1): 57-62. [Cheng G Q,Hu B C,Xu X G. 2008. An analysis of the impact of the new round of rise in the prices of agricultural produce[J]. Ma-nagement World,(1): 57-62.]
董志伟. 2014. 理顺工农产品比价与调控通货膨胀的矛盾与协调[D]. 北京:对外经济贸易大学. [Dong Z W. 2014. The coordination of the contradiction to straighten out the relative price of industrial and agricultural products and inflation control[D]. Beijing: University of International Business and Economics.]
高铁梅. 2009. 计量经济分析方法与建模 EViews应用及实例[M]. 北京:清华大学出版社. [Gao T M. 2009. Econome-tric analysis method and modeling[M]. Beijing: Tsinghua University Press.]
顾国达,尹靖华. 2014. 国际粮价波动对我国粮食缺口的影响[J]. 农业技术经济,(12): 4-14. [Gu G D,Yin J H. 2014. The influence of international grain price fluctuation on China’s grain gap[J]. Journal of Agrotechnical Econo-mics,(12): 4-14.]
广西壮族自治区物价局课题组. 2015. 物价波动、农产品价格与农民收入增长关系实证研究[J]. 中国物价,(6): 3-5. [Research Group of Guangxi Zhuang Autonomous Region Price Bureau. 2015. An empirical study on the relationship between price fluctuation,agricultural product price and farmers’ income growth[J]. China Price,(6): 3-5.]
郭震. 2012. 谁推动了通货膨胀?[J]. 科学学与科学技术管理,(8): 123-129. [Guo Z. 2012. Who pushed inflation?[J]. Science of Science and Management of S.& T.,(8): 123-129.]
黄慧莲,熊涛,李崇光. 2018. 我国农产品期货市场价格泡沫特征及品种差异性研究[J]. 农业技术经济,(1): 32-47. [Huang H L,Xiong T,Li C G. 2018. Prices bubbles and differences in Chinese agricultural commodity futures markets[J]. Journal of Agrotechnical Economics,(1): 32-47.]
刘国栋,苏志伟. 2018. “菜篮子”农产品价格投机泡沫:证据、特征与启示[J]. 上海财经大学学报,20(2): 100-115. [Liu G D,Su Z W. 2018. Bubbles of vegetable basket prices: Evidence,characteristics and enlightenments[J]. Journal of Shanghai University of Finance and Economics,20(2): 100-115.]
罗永恒. 2012. 中国农产品价格波动对经济增长影响的实证研究[J]. 财经理论与实践,33(4): 119-123. [Luo Y H. 2012. The price fluctuation of farm product and economic growth in China[J]. The Theory and Practice of Finance and Economics,33(4): 119-123.]
马跃海. 2011. 关注农产品价格波动对农民收入的影响[N]. 金融时报,2011-02-17(12). [Ma Y H. 2011. Pay attention to the influence of agricultural product price on farmers’ income[N]. Financial News,2011-02-17(12).]
秦学子. 2014. 经济加速转型背景下中国农产品价格波动规律研究[D]. 苏州:苏州大学. [Qin X Z. 2014. Reaserch on Chinese argriculture products with the economic transi-formation[D]. Suzhou: Soochow University.]
石自忠,王明利,胡向东. 2016. 经济政策不确定性与中国畜产品价格波动[J]. 中国农村经济,(8): 42-55. [Shi Z Z,Wang M L,Hu X D. 2016. Uncertainty of economic policy and price fluctuation of animal products in China[J]. Chinese Rural Economy,(8): 42-55.] 王冲,陈旭. 2012. 农产品价格上涨的原因与流通改革的思路探讨[J]. 中国软科学,(4): 11-17. [Wang C,Chen X. 2012. Discussion on the causes of price rising and the conside-rations on circulation reform for agricultural products[J]. China Soft Science,(4): 11-17.]
王进,冯梦雨. 2015. 农产品价格与通货膨胀的动态关系与溢出效应研究[J]. 统计与信息论坛,30(3): 37-45. [Wang J,Feng M Y. 2015. A study on dynamic correlations between agricultural prices and inflation and its spillover effects[J]. Statistics & Information Forum,30(3): 37-45.]
王耀中,贺辉,陈思聪. 2018. 国际大宗农产品定价机制影响中国农产品价格的传导机理研究[J]. 财经理论与实践,39(2): 41-50. [Wang Y Z,He H,Chen S C. 2018. Research on the transmission principles of pricing mechanisms of International bulk agricultural commodities affecting prices of Chinese agricultural products[J]. The Theory and Practice of Finance and Economics,39(2): 41-50.]
魏乐献. 2009. 2006—2009年处于刘易斯转折点附近的我国农产品价格波动研究[D]. 上海:华东师范大学. [Wei L X. 2009. Study on price fluctuations of agricultural products in China from 2006 to 2009[D]. Shanghai: East China Normal University.]
徐雪高. 2008. 新一轮农产品价格波动周期:特征、机理及影响[J]. 财经研究, 34(8): 110-119. [Xu X G. 2008. The newround fluctuation cycle of agricultural products prices: Characteristics,mechanism and effects[J]. Journal of Finance and Economics,34(8): 110-119.]
徐振宇,梁佳,李冰倩. 2016. 我国城乡居民食用农产品消费需求弹性比较——基于2003—2012年省级面板数据[J]. 商业经济与管理,(5): 27-36. [Xu Z Y,Liang J,Li B Q. 2016. Comparative study on demand elasticity of edible agricultural products of urban and rural residents in China: Based on provincial panel data from 2003 to 2012[J]. Journal of Business Economics,(5): 27-36.]
游凤. 2015. 农产品价格与CPI相互关系的实证研究[D]. 荆州:长江大学. [You F. 2015. The empirical research on the relationship between agricultural prices and the CPI[D]. Jingzhou: Yangtze University.]
Fakari B,Farsi M M,Kojouri M. 2013. Determining fluctuations and cycles of corn price in Iran[J]. Agricultural Economics,59(8): 373-380.
Ganneval S. 2016. Spatial price transmission on agricultural commodity markets under different volatility regimes[J]. Economic Modelling,52(Part A): 173-185.
Guerrero S,Hernández-del-Valle G,Juárez-Torres M. 2016. Using a functional approach to test trending volatility in the price of Mexican and international agricultural pro-ducts[J]. Agricultural Economics,48(1): 3-13.
Li N,Ker A,Sam A G,Aradhyula S. 2017. Modeling regime-dependent agricultural commodity price volatilities[J]. Agri-cultural Economics,48(6): 683-691.
Molero-Simarro R. 2016. Is China reaching the lewis turning point?Agricultural prices,rural-urban migration and the labour share[J]. Journal of Australian Political Economy,(78): 48-86.
Xie H L,Wang B H. 2017. An empirical analysis of the impact of agricultural product price fluctuations on China’s grain yield[J]. Sustainability,9(6): 906.
(責任编辑 邓慧灵)
关键词: SVAR模型;农产品价格指数;波动;动态关系;冲击
Abstract:【Objective】This paper studied the dynamic relationship between China’s agricultural product prices and consumer price index(CPI) to provide a basis for rationally regulating agricultural product prices and promoting the stable development of the market economy. 【Method】Based on the CPI and the market price indexes of three agricultural pro-ducts such as Japonica rice, corn and soybean from January, 2010 to May, 2019, the SVAR model was constructed. The cointegration test, Granger causality test, impulse response function and variance decomposition method were used to explore the internal relationship between the agricultural product price index and CPI. 【Result】The descriptive statistical results showed that the variances of agricultural product prices from large to small were corn(9.274), Japonica rice (7.328), soybean (4.252). It showed that the price of corn was the most volatile, followed by the price of Japonica rice, and the price of soybean was relatively stable. The result of correlation analysis showed that CPI was extremely positively correlated with the price index of Japonica rice, corn and soybean(P<0.01). The correlation coefficients were 0.747, 0.546 and 0.681 respectively. There were Granger causality and long-term cointegration relationship between the price indexes of three agricultural products and CPI. The long-term influence coefficients of the price indexes of Japonica rice, corn and soybean on CPI were -0.192, 0.069 and -0.125. The adjustment speeds were -0.202, 0.003 and -0.258. The short-term impact coefficients were -0.100, 0.004 and -0.010. It showed that when the price of agricultural products deviated from the long-term equilibrium state of CPI, it was effectively adjusted through the error correction. The result of impulse response function showed that the external impact on the Japonica rice price index and soybean price index brought positive impact on CPI in the short term, while the external shocks of the price index of corn had a negative impact on the short-term CPI. The results of variance decomposition showed that corn price index had positive long-term equilibrium effect on CPI fluctuation, while Japonica rice price index and soybean price index had negative long-term equilibrium effect on CPI, but the effect was not significant. 【Suggestion】Producers should take the construction of agricultural modernization as the guidance, carry out systematic and scientific control on agricultural products, create industrialized, large-scale and digital agriculture. The government should participate in macro-control of price fluctuations in agricultural trade, formulate strategic production plans, improve pricing level, market resource allocation and integration capabilities. 2. 2. 4 方差分解結果分析 表7显示的是CPI变动方差由CPI、粳稻、玉米和大豆价格指数变动导致的部分,表中显示从第1期开始,农产品价格对CPI的影响作用日益增加。表7方差分解结果表明的是,构造以CPI和粳稻、玉米、大豆价格指数分别作为被解释变量构造的方程,所产生的新息对CPI各期预测标准差产生影响的贡献度,每一行百分比之和为100%。以第3期为例,CPI的预测标准差为0.502,其中93.976%由CPI的一阶差分残差冲击所致,2.104%由粳稻价格指数的残差冲击作用所致,3.162%是由玉米价格指数的残差冲击所致,其余0.758%由大豆价格指数残差冲击所致。不考虑CPI自身的贡献率,玉米价格指数对CPI的贡献程度逐渐增加,即由玉米提供给CPI变动解释的部分在第10期达峰值(3.451%),其次是粳稻(2.119%),大豆的贡献率最小(0.775%)。
3 讨论
农产品市场的波动特征可能随市场形势而发生变化,因此需要将波动的结构性转化为普适化的情形。本研究采用SVAR模型分析我国粳稻、玉米和大豆3种农产品与CPI间的动态关系,研究结果表明,格兰杰因果关系、长期协整关系均存在于粳稻、玉米、大豆价格指数与CPI间;由于市场化程度和政府保护政策等原因,粳稻和大豆价格受外部冲击给CPI带来不同程度的正向影响,玉米价格受外部冲击给CPI带来负影响;但是农产品的现货价格指数和CPI不会背离长期均衡点,误差修正机制将会自主发挥作用将其恢复至原来的平衡状态,而农产品价格对CPI的助推与抑制作用并不十分显著。上述结论与郭震(2012)、游凤(2015)所得出的粮食价格、农产品价格对通货膨胀影响有限,其不是通货膨胀主要原因的结论基本符合。由方差分解结果可知,在研究样本中造成CPI波动的因素,其本身贡献率占最大比重为93.98%,而粳稻、玉米和大豆价格对CPI的贡献率微乎其微。这一结论与广西壮族自治区物价局课题组(2015)所得结论不谋而合,均认为CPI在短时间内受到来自农产品销售价格的影响较弱,且影响力会随着时间的推移而逐渐稳定。石自忠等(2016)则进一步研究得出畜产品价格与CPI相关程度更为密切,而粮食价格与CPI关联程度相较而言稍微弱。
本研究基于农产品价格这一热点话题,选取2010年1月—2019年5月国家统计局编制的农产品集贸市场价格指数,用粳稻、玉米、大豆3种典型农产品的月度价格数据,构造添加约束的SVAR模型,从动态影响关系方面着手分析我国农产品价格波动与CPI的关联程度,体现了本研究的科学性。但存在待改进之处,如选取农产品的覆盖面不够广泛,说服力有待提升,样本区间长度可向更早的时间方向扩展。
4 建议
综上所述,在深入挖掘出我国农产品价格的异常波动与CPI之间动态关系的基础上,为促进物价总水平持续发展,提出如下建议:
4. 1 生产者进行科学化管制,加速农产品价格与CPI长期均衡的误差修正
根据本研究结论,农产品价格与CPI间存在的长期均衡性仅依靠误差修正机制调节是非常缓慢的。因此需要人为助力来维护农产品价格与CPI的稳态,最优方案是生产者对农产品进行产业化、规模化、数字化管理。通过系统的科学管制,争取在5G来临前,生产者们也能顺利搭上数字农业这班“顺风车”。加大对建设农业农村现代化的投资力度,也将极大程度地调动、提高生产者科学种植和科学养殖的积极性。由于环境气候等因素的变化,市场大环境供求关系日新月异,从而导致豆类、玉米等农作物价格紧张,牵动了以猪肉、家禽为代表的生鲜产品生产成本快速上升。因此生产者需要树立科学的方法意识,通过智能手段及时获取讯息,关注气候环境变化确保粮食安全。为防止因小农经济的零散性及对农产品通胀预期的谬误而导致的农产品价格浮动情况发生,可以建立专业的农业组织将分散的农户规模集中,以降低生产者对市场波动自我调节的盲目性。生产者还可以与大企业进行协同合作,分散承担风险,达成互惠互利的局面。
4. 2 政府制定战略性生产规划,减小外部冲击对CPI的影响
不同种类的农产品价格受外部冲击后,对短期CPI产生的影响各有差异,针对此结论,本研究也提出相关建议。从时间范畴来审视,在短期内,当农产品价格动荡时,政府应当通过重新分配进一步加速扶贫进程,从长远来看应进行战略性的生产规划,以遏制价格波动对市场造成的影响。政府宏观调控农业贸易中的价格波动,可考虑下列措施:改进农产品价格信息服务系统,消除因信息不对称、不及时而导致的农产品价格传导迟滞现象;将大数据、云存储等应用于农产品市场风险监控和追溯,提高农业生产、加工、产品销售整个产业链的深度集成,提高信息传输的及时性和管理决策的合理性;加强对违法行为的监管和举报,最大限度地打击故意提价以从中赚取超额利润,而导致价格波动、农民个人利益遭受侵害的违法犯罪行为。
因此,正确认识并利用农产品价格对CPI的误差修正作用,削弱外部冲击对CPI产生的影响,促进我国农产品价格与居民消费价格指数持续、平稳发展,不仅需要国家政策的强力支持,也需要每个公民提升监管意识来维系,缺一不可。个人秉承科学生产观念,全面提升农业效率;国家高度重视现代农业产业,巩固农产品价格稳定性,共同努力在农业领域和农村地区创造新的贸易形式,同时建立主体多元、要素集聚的综合体系。
参考文献:
陈晓坤,张俊飚,李鹏. 2013. 我国农产品价格波动与通货膨胀问题研究历史回顾及文献综述——基于国内1978—2012年的文献[J]. 中国农业大学学报,18(4): 238-244. [Chen X K,Zhang J B,Li P. 2013. History retrospect and literature review of our country agricultural product prices fluctuation and inflation problem research: Based on the domestic literatures from 1978-2012[J]. Journal of China Agricultural University,18(4): 238-244.] 程國强,胡冰川,徐雪高. 2008. 新一轮农产品价格上涨的影响分析[J]. 管理世界,(1): 57-62. [Cheng G Q,Hu B C,Xu X G. 2008. An analysis of the impact of the new round of rise in the prices of agricultural produce[J]. Ma-nagement World,(1): 57-62.]
董志伟. 2014. 理顺工农产品比价与调控通货膨胀的矛盾与协调[D]. 北京:对外经济贸易大学. [Dong Z W. 2014. The coordination of the contradiction to straighten out the relative price of industrial and agricultural products and inflation control[D]. Beijing: University of International Business and Economics.]
高铁梅. 2009. 计量经济分析方法与建模 EViews应用及实例[M]. 北京:清华大学出版社. [Gao T M. 2009. Econome-tric analysis method and modeling[M]. Beijing: Tsinghua University Press.]
顾国达,尹靖华. 2014. 国际粮价波动对我国粮食缺口的影响[J]. 农业技术经济,(12): 4-14. [Gu G D,Yin J H. 2014. The influence of international grain price fluctuation on China’s grain gap[J]. Journal of Agrotechnical Econo-mics,(12): 4-14.]
广西壮族自治区物价局课题组. 2015. 物价波动、农产品价格与农民收入增长关系实证研究[J]. 中国物价,(6): 3-5. [Research Group of Guangxi Zhuang Autonomous Region Price Bureau. 2015. An empirical study on the relationship between price fluctuation,agricultural product price and farmers’ income growth[J]. China Price,(6): 3-5.]
郭震. 2012. 谁推动了通货膨胀?[J]. 科学学与科学技术管理,(8): 123-129. [Guo Z. 2012. Who pushed inflation?[J]. Science of Science and Management of S.& T.,(8): 123-129.]
黄慧莲,熊涛,李崇光. 2018. 我国农产品期货市场价格泡沫特征及品种差异性研究[J]. 农业技术经济,(1): 32-47. [Huang H L,Xiong T,Li C G. 2018. Prices bubbles and differences in Chinese agricultural commodity futures markets[J]. Journal of Agrotechnical Economics,(1): 32-47.]
刘国栋,苏志伟. 2018. “菜篮子”农产品价格投机泡沫:证据、特征与启示[J]. 上海财经大学学报,20(2): 100-115. [Liu G D,Su Z W. 2018. Bubbles of vegetable basket prices: Evidence,characteristics and enlightenments[J]. Journal of Shanghai University of Finance and Economics,20(2): 100-115.]
罗永恒. 2012. 中国农产品价格波动对经济增长影响的实证研究[J]. 财经理论与实践,33(4): 119-123. [Luo Y H. 2012. The price fluctuation of farm product and economic growth in China[J]. The Theory and Practice of Finance and Economics,33(4): 119-123.]
马跃海. 2011. 关注农产品价格波动对农民收入的影响[N]. 金融时报,2011-02-17(12). [Ma Y H. 2011. Pay attention to the influence of agricultural product price on farmers’ income[N]. Financial News,2011-02-17(12).]
秦学子. 2014. 经济加速转型背景下中国农产品价格波动规律研究[D]. 苏州:苏州大学. [Qin X Z. 2014. Reaserch on Chinese argriculture products with the economic transi-formation[D]. Suzhou: Soochow University.]
石自忠,王明利,胡向东. 2016. 经济政策不确定性与中国畜产品价格波动[J]. 中国农村经济,(8): 42-55. [Shi Z Z,Wang M L,Hu X D. 2016. Uncertainty of economic policy and price fluctuation of animal products in China[J]. Chinese Rural Economy,(8): 42-55.] 王冲,陈旭. 2012. 农产品价格上涨的原因与流通改革的思路探讨[J]. 中国软科学,(4): 11-17. [Wang C,Chen X. 2012. Discussion on the causes of price rising and the conside-rations on circulation reform for agricultural products[J]. China Soft Science,(4): 11-17.]
王进,冯梦雨. 2015. 农产品价格与通货膨胀的动态关系与溢出效应研究[J]. 统计与信息论坛,30(3): 37-45. [Wang J,Feng M Y. 2015. A study on dynamic correlations between agricultural prices and inflation and its spillover effects[J]. Statistics & Information Forum,30(3): 37-45.]
王耀中,贺辉,陈思聪. 2018. 国际大宗农产品定价机制影响中国农产品价格的传导机理研究[J]. 财经理论与实践,39(2): 41-50. [Wang Y Z,He H,Chen S C. 2018. Research on the transmission principles of pricing mechanisms of International bulk agricultural commodities affecting prices of Chinese agricultural products[J]. The Theory and Practice of Finance and Economics,39(2): 41-50.]
魏乐献. 2009. 2006—2009年处于刘易斯转折点附近的我国农产品价格波动研究[D]. 上海:华东师范大学. [Wei L X. 2009. Study on price fluctuations of agricultural products in China from 2006 to 2009[D]. Shanghai: East China Normal University.]
徐雪高. 2008. 新一轮农产品价格波动周期:特征、机理及影响[J]. 财经研究, 34(8): 110-119. [Xu X G. 2008. The newround fluctuation cycle of agricultural products prices: Characteristics,mechanism and effects[J]. Journal of Finance and Economics,34(8): 110-119.]
徐振宇,梁佳,李冰倩. 2016. 我国城乡居民食用农产品消费需求弹性比较——基于2003—2012年省级面板数据[J]. 商业经济与管理,(5): 27-36. [Xu Z Y,Liang J,Li B Q. 2016. Comparative study on demand elasticity of edible agricultural products of urban and rural residents in China: Based on provincial panel data from 2003 to 2012[J]. Journal of Business Economics,(5): 27-36.]
游凤. 2015. 农产品价格与CPI相互关系的实证研究[D]. 荆州:长江大学. [You F. 2015. The empirical research on the relationship between agricultural prices and the CPI[D]. Jingzhou: Yangtze University.]
Fakari B,Farsi M M,Kojouri M. 2013. Determining fluctuations and cycles of corn price in Iran[J]. Agricultural Economics,59(8): 373-380.
Ganneval S. 2016. Spatial price transmission on agricultural commodity markets under different volatility regimes[J]. Economic Modelling,52(Part A): 173-185.
Guerrero S,Hernández-del-Valle G,Juárez-Torres M. 2016. Using a functional approach to test trending volatility in the price of Mexican and international agricultural pro-ducts[J]. Agricultural Economics,48(1): 3-13.
Li N,Ker A,Sam A G,Aradhyula S. 2017. Modeling regime-dependent agricultural commodity price volatilities[J]. Agri-cultural Economics,48(6): 683-691.
Molero-Simarro R. 2016. Is China reaching the lewis turning point?Agricultural prices,rural-urban migration and the labour share[J]. Journal of Australian Political Economy,(78): 48-86.
Xie H L,Wang B H. 2017. An empirical analysis of the impact of agricultural product price fluctuations on China’s grain yield[J]. Sustainability,9(6): 906.
(責任编辑 邓慧灵)