Ultra-broadband metamaterial absorbers from long to very long infrared regime

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:jealy0717
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si3N4/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si3N4, the average absorptions of two types of absorbers achieve almost 95%from 8 to 14μm (experiment result:78%from 6.5 to 13.5μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO2/Ti absorbers which can absorb 92%and 87%of ultra-broadband light in the 14–30μm and 8–30μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
其他文献
A MXene-GaN-MXene based multiple quantum well photodetector was prepared on patterned sapphire substrate by facile drop casting. The use of MXene electrodes improves the responsivity and reduces dark current, compared with traditional Metal-Semiconductor-
期刊
This special issue is devoted to the celebration of the century anniversary of Xiamen University (XMU) (6 April 2021) and the establishment of the LSA Editorial Office in Xiamen (3 July 2021), a collection to highlight the recent exciting research works p
期刊
All-dielectric metasurface analogue of electromagnetically induced transparency (EIT) is highly desirable for devel-oping compact and low-loss nanophotonic devices, such as dispersion-tunable slow-light meta devices.
期刊
Semiconductor nanostructures with low dimensionality like quantum dots and quantum dashes are one of the best attractive and heuristic solutions for achieving high performance photonic devices. When one or more spatial dimensions of the nanocrystal approa
期刊
Using one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This Ⅲ-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengt
期刊
While total internal reflection (TIR) lays the foundation for many important applications, foremost fibre optics that revolutionised information technologies, it is undesirable in some other applications such as light-emitting diodes (LEDs), which are a b
期刊
Laser has been demonstrated to be a mature and versatile tool that presents great flexibility and applicability for the precision engineering of a wide range of materials over other established micromachining techniques. Past decades have witnessed its ra
期刊
Inferring the properties of a scattering objective by analyzing the optical far-field responses within the framework of inverse problems is of great practical significance. However, it still faces major challenges when the parameter range is growing and i
期刊
Hot charge carriers (HC) are photoexcited electrons and holes that exist in nonequilibrium high-energy states of photoactive materials. Prolonged cooling time and rapid extraction are the current challenges for the development of future innovative HC-base
期刊
The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemissi
期刊