论文部分内容阅读
论文结合短时傅里叶变换(short time Fourier transform,STFT)和平行因子分解(parallel factor,PARAFAC)模型,对运动想象脑电(EEG)进行分类。首先,通过短时傅里叶变换获得左、右手运动想象脑电的时频分布,然后平行因子分解方法从构建的张量数据中提取时域特征,最后采用贝叶斯分类器对特征进行分类。在短时傅里叶变换中,选择合理的窗函数长度和相邻片段重叠程度很重要,对分类结果有较大的影响,通过调整这两个参数,论文提出的方法获得了较好的分类结果。