论文部分内容阅读
由于函数的图像直观,启迪思维;函数的定义严谨,科学性强;函数的性质内容丰富、具体、实用性强,因此在研究一些数学问题时,可通过构造函数来解题.本文介绍的是如何构造三次函数求解最值问题,供高中师生参考.一、关于最小值问题例1(2013年高考新课标版Ⅱ(理)试题)等差数列{a_n}的前n项和为S_n,已知S_(10)=0,
Because the function of the image is intuitive and enlightening thinking; the definition of the function is rigorous and scientific; the nature of the function is rich in content, specific and practical, so when studying some mathematical problems, the problem can be solved through the constructor function. How to construct the cubic function to solve the problem of the best value for teachers and students in high school. First, on the minimum problem Example 1 (2013 college entrance examination new curriculum standard II (rational) questions) equal difference series {a_n} before the n and S_n , Known S_(10)=0,