论文部分内容阅读
深基坑变形监测与预测是深基坑设计施工中的一个重要的环节,准确地预测深基坑未来的变形,是深基坑变形监测的最终目的。针对传统常用预测方法存在一定的局限性这个问题,结合支持向量机的研究现状,提出将能够有效地解决小样本、非线性、高维数、局部极小等问题的支持向量机模型应用于深基坑变形预测的方法。具体方法是:采用粒子群算法对支持向量机的相关参数进行寻优,得到改进支持向量机预测模型,然后将其预测结果与传统的支持向量机模型、Elman动态神经网络模型预测结果进行比较,最后采用均方误差、平方和误差、平均相对误差对预测效果进