论文部分内容阅读
针对传统k-means聚类算法中对初始聚类中心随意选取和人为指定的缺陷,提出一种改进的初始聚类中心的选取方法,利用差异矩阵将新的聚类初始中心计算方法用在传统的k-means算法思想中,对传统的k-means算法进行改进。降低k-means算法的复杂度和对异常点的敏感度,提高算法的可伸缩性。