论文部分内容阅读
Using cultivating experiments in fields under drought stress, yields and characteristics in morphology, growth and development of different genotype maize inbred lines were studied systematically. We evaluated and classified the drought resistance of these materials based on the needed indexes, including subordinate func-tion values of drought resistance (SV), drought coefficient (DC) and drought index (DI) of yield by fuzzy function method and cluster analysis. We also analyzed the corre-lations between parameters and tested values of traits. The effective parameters and indexes of comprehensive evalu-ation for drought resistance were selected with principal component analysis. The results showed that under drought stress, the yield of maize inbred lines obviously decreased. The anthesis and silking interval (ASI) was prolonged compared with the control, with a smaller leaf area, thinner stalk, shorter and smaller ears, lengthened barren ear tip, a decline in plant height and ear position, reduced grain number per ear and grain weight, which led to a yield decline. Effects of drought treatment on differ-ent maize inbred lines were significantly different. 79-1E, Jiao51, Su1-1 and 18599 were found to be highly resistant to drought, while 1125 and 5311 performed the worst. DI and SV were significantly correlated with drought resist-ance. Our results indicated that DI, SV, yield and leaf area could be used as parameters and indexes to effectively evaluate the drought resistance of maize. Meanwhile, DC, plant height, ASI, grain number per ear or row, ear length and diameter could be taken as auxiliary para-meters and indexes. An applied scientific method for the comprehensive evaluation of drought resistance was offered in this paper.