论文部分内容阅读
为了解决在历史样本数据有限情况下,传统预测方法预测精度低以及支持向量机预测中人为选择参数的盲目性,结合遗传算法和支持向量机的优势,建立了进化支持向量机预测模型。利用该模型对某型电铲发电机组的振动趋势进行预测,研究结果表明,该方法能自动优化参数,提高了预测精度。该方法可应用到其他时间序列预测中,具有较高的应用价值。