论文部分内容阅读
神经网络集成和支持向量机都是在机器学习领域很流行的方法。集成方法成功地提高了神经网络的稳健性和精度,其中选择性集成方法通过算法选择差异度大的个体,取得了很好的效果。而支持向量机更是克服了神经网络的局部最优,不稳定等缺点,也在多个方面取得了很好的结果。该文着重研究这两种方法在小样本多类数据集上的性能.在四个真实数据集上的结果表明,支持向量机性能要比神经网络集成稍好.