StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation,

来源 :农业科学学报(英文) | 被引量 : 0次 | 上传用户:sky011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are considered the two main double-strand break (DSB) repair approaches in eukaryotes. Inhibiting the activities of the key component in NHEJ commonly enhances the efficiency of targeted gene knockouts or affects growth and development in higher eukaryotes. However, little is known about the roles of the NHEJ pathway in foliar pathogens. Here we identified a gene designated StKU80, which encodes a putative DNA end-binding protein homologous to yeast Ku80, in the foliar pathogen Exserohilum turcicum. Conserved domain analysis showed that the typical domains VWA, Ku78 and Ku-PK-bind are usually present in Ku70/80 proteins in eukaryotes and are also present in StKu80. Phylogenetic analysis indicated that StKu80 is most closely related to Ku80 (XP_001802136.1) from Parastagonospora nodorum, followed by Ku80 (AGF90044.1) from Monascus ruber. Furthermore, the gene knockout mutants ΔStKU80-1 and ΔStKU80-2 were obtained. These mutants displayed longer septas, thinner cell walls, smaller amounts of substances on cell wall surfaces, and more mitochondria per cell than the wild-type (WT) strain but similar HT-toxin activity. The mutants did not produce conidia and mature appressoria. On the other hand, the mutants were highly sensitive to H2O2, but not to ultraviolet radiation. In summary, the StKU80 plays devious roles in regulating the development of E. turcicum.
其他文献
Spatial dynamics of crop yield provide useful information for improving the production. High sensitivity of crop growth models to uncertainties in input factors
Soil water deficit and salt stress are major limiting factors of plant growth and agricultural productivity. The primary root is the first organ to perceive the