论文部分内容阅读
摘要:本文从无刷直流电动机的工作原理出发,建立了无刷电机系统的数学模型,并根据建立的模型进行仿真分析;在此基础之上,重点讨论了方波电机的平顶波宽度对于转矩脉动的影响,当波顶宽度小于110o时,采用正弦波电流控制的效果优于矩形控制。
关键词:无刷直流电动机 波顶宽度 转矩脉动
Abstract: From the basic operation principles of the permanent magnet brushless DC motor, this paper deduces the mathematic model. Based on this model, the special simulation model is set up with MATLAB/Simulink, and some analysis has been done on it. In this paper, the commutation torque pulsation effected by the crest width of the back-EMF waveform is discussed. We get the conclusion that sine current method is more effective for minimizing the torque ripple without any expense of the torque-current ratio when the crest width of the back-EMF waveform is less than 110o electrical angles. And the simulation results prove it.
Keywords: BLDCM,the crest width of the back-EMF waveform,commutation torque pulsation 引言
直流电机以其优良的运行特性在运动控制领域得到了广泛的应用,但是其利用电刷进行机械换向是它的致命弱点。近50年来,由于电动机本体及其相关学科的迅猛发展,“无刷直流电机”的概念已由最初的具有电子换向的直流电机发展到泛指一切具有有刷直流电机外部特性的电子换向电机。无刷直流电机的发展亦使得电机理论与大功率开关器件、模拟和数字专用集成电路、微处理技术、现代控制理论以及高性能材料的结合更加紧密。如今无刷直流电机集特种电机、变速机构、检测元件、控制软件与硬件于一体,形成为新一代伺服系统,显示出广泛的应用前景和强大的生命力[1,2]。
1无刷直流电机调速系统的基本结构与运行原理
无刷直流电动机调速系统是由无刷直流电动机本体、转子位置传感器和逆变器三部分组成。其原理框图如图1所示。图中,电源通过逆变器向电动机定子绕组供电,位置传感器随时检测到转子所处的位置.并根据转子的位置信号来控制开关管的导通和截止.从而自动地控制了各相绕组通电与断电,实现了电子换向[3]。
图1无刷直流电动机调速系统的原理框图
2 无刷直流电机系统的数学模型
无刷直流电机电气部分主要包括电动机本体和功率逆变器,因此数学模型自然也需要分别加以考虑。现以转子表面磁极结构、定子电枢绕组星形连接的三相无刷直流电机为例,分析电机运行过程中的数学模型和电磁转矩等特性。为了便于分析,现假设如下:
1) 定子三相绕组完全对称,空间互差120°电角,参数相同;
2) 转子永磁体产生的气隙磁场为梯形波,三相绕组反电势为梯形波,波顶宽度120°;
3) 忽略功率器件导通和关断事件的影响,功率器件的导通压降恒定,关断后等效电阻无穷大;
4) 忽略定子铁心齿槽效应的影响;
5) 忽略定子绕组电枢反应的影响;
6) 电机气隙磁导均匀,认为磁路不饱和,不计磁滞损耗与涡流损耗[4]。
则电压方程可表示为:
其中: —定子每相绕组电阻; —定子每相绕组自感与两相绕组之间的互感; —定子三相绕组相电压; —定子三相绕组相电流; —定子三相绕组每组反电势; —微分算子
功率逆变器两相导通数学模型可以用以下电压方程描述:
其中: —直流母线电压; —三相逆变器高压侧和低压侧 功率开关器件导通状态,假设高压侧和低压侧都至少有一个功率开关器件导通,那么状态开关量S=1,否则状态开关量S=0; —每相功率开关器件导通状态,假设高压侧导通为1,低压侧导通是-1,高压侧和低压侧都不导通等于0,禁止高压侧和低压侧都导通; —三相逆变器功率器件导通压降,假设功率开关器件导通则导通压降等于 ,功率二极管导通则压降为 ,同一相高低压侧没有功率器件导通则压降等于0[5,6]。
3 无刷直流电机系统的仿真分析
无刷直流电动机控制系统实际上由电机本体,逆变器,驱动控制器三部分组成。本系统中直流电源通过电压源型三相桥式PWM逆变器向电机供电,只要根据位置检测信号触发导通对应的开关器件,就可获得与感应电势同相位的电流从而驱动电机运转[7]。
4 方波平顶宽度对转矩脉动的影响与消除
对波顶分别为1000和1200方波电机采用以下电机参数进行仿真研究:
自感—7mH;互感—3.8mH;反电动势系数—0.0288;转动惯量—1.6*10-4 ; 电阻—2.875 ;摩擦系数—0.001; 加载时间—0.5s;负載转矩—0.5 ;给定转速—1000r/min;
由图3、4可见,在方波电机的矢量控制中,反电动势依然表现出方波的特性,但是控制电流呈现正弦态势,属于正弦控制策略。
由图5、图6、图7可以看出:当平顶波的宽度大于1100时,采用矩形电流控制效果较好;当平顶波宽度小于1100时,采用正弦波电流驱动(矢量控制)可以有效地减小转矩的谐波,从而减小转矩脉动。
由图8可见,正弦控制下,方波电机的速度响应也可基本满足要求。因此在平顶波宽度较小的情况下,可采用正弦波电流控制代替矩形波控制。
图8平顶波宽度为100度时矢量控制转速响应
5 结论
本文主要研究了无刷直流电动机反电动势方波平顶宽度对电磁转矩脉动的影响,分析了不同的平顶宽度采取的不同控制方式,在波顶宽度小于110 0时,采用正弦控制策略较好。采用矢量控制分别对1200和1000的方波电机进行了仿真,并与传统的矩形波电流控制进行了比较,验证了结果的真实性。
参考文献
[1] Zhang Gaifan, Ma Weiming. Transient Analysis of Synchronous Machines[J]. Press of Naval University of Engineering P.R. China, 1999.
[2] 林勇军.永磁无刷直流电动机转矩脉动的研究[D]. 合肥:合肥工业大学. 硕士学位论文, 2003.
[3] 王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社, 2002:215-230.
[4] 谢宝昌,任永德.電机的DSP控制技术及其应用[M].北京.北京航空航天大学出版社,2002:249-278.
[5] 张争争,任永德,谢宝昌. 基于DSP的无刷直流电动机控制系统[J].微特电机,2001(2):34-36.
[6] 汪锐,许静宇. 基于DSP芯片的永磁无刷直流电机控制器[J].微电机,2000(4):27-29.
[7] Modeling, Simulation, and Analysis of Permanent-Magnet motor Drives, part Ⅰ: The Permanent-Magnet Synchronous Motor Drive[J]. IEEE Trans on Industry Application. 1989,25(2):265-273.
关键词:无刷直流电动机 波顶宽度 转矩脉动
Abstract: From the basic operation principles of the permanent magnet brushless DC motor, this paper deduces the mathematic model. Based on this model, the special simulation model is set up with MATLAB/Simulink, and some analysis has been done on it. In this paper, the commutation torque pulsation effected by the crest width of the back-EMF waveform is discussed. We get the conclusion that sine current method is more effective for minimizing the torque ripple without any expense of the torque-current ratio when the crest width of the back-EMF waveform is less than 110o electrical angles. And the simulation results prove it.
Keywords: BLDCM,the crest width of the back-EMF waveform,commutation torque pulsation 引言
直流电机以其优良的运行特性在运动控制领域得到了广泛的应用,但是其利用电刷进行机械换向是它的致命弱点。近50年来,由于电动机本体及其相关学科的迅猛发展,“无刷直流电机”的概念已由最初的具有电子换向的直流电机发展到泛指一切具有有刷直流电机外部特性的电子换向电机。无刷直流电机的发展亦使得电机理论与大功率开关器件、模拟和数字专用集成电路、微处理技术、现代控制理论以及高性能材料的结合更加紧密。如今无刷直流电机集特种电机、变速机构、检测元件、控制软件与硬件于一体,形成为新一代伺服系统,显示出广泛的应用前景和强大的生命力[1,2]。
1无刷直流电机调速系统的基本结构与运行原理
无刷直流电动机调速系统是由无刷直流电动机本体、转子位置传感器和逆变器三部分组成。其原理框图如图1所示。图中,电源通过逆变器向电动机定子绕组供电,位置传感器随时检测到转子所处的位置.并根据转子的位置信号来控制开关管的导通和截止.从而自动地控制了各相绕组通电与断电,实现了电子换向[3]。
图1无刷直流电动机调速系统的原理框图
2 无刷直流电机系统的数学模型
无刷直流电机电气部分主要包括电动机本体和功率逆变器,因此数学模型自然也需要分别加以考虑。现以转子表面磁极结构、定子电枢绕组星形连接的三相无刷直流电机为例,分析电机运行过程中的数学模型和电磁转矩等特性。为了便于分析,现假设如下:
1) 定子三相绕组完全对称,空间互差120°电角,参数相同;
2) 转子永磁体产生的气隙磁场为梯形波,三相绕组反电势为梯形波,波顶宽度120°;
3) 忽略功率器件导通和关断事件的影响,功率器件的导通压降恒定,关断后等效电阻无穷大;
4) 忽略定子铁心齿槽效应的影响;
5) 忽略定子绕组电枢反应的影响;
6) 电机气隙磁导均匀,认为磁路不饱和,不计磁滞损耗与涡流损耗[4]。
则电压方程可表示为:
其中: —定子每相绕组电阻; —定子每相绕组自感与两相绕组之间的互感; —定子三相绕组相电压; —定子三相绕组相电流; —定子三相绕组每组反电势; —微分算子
功率逆变器两相导通数学模型可以用以下电压方程描述:
其中: —直流母线电压; —三相逆变器高压侧和低压侧 功率开关器件导通状态,假设高压侧和低压侧都至少有一个功率开关器件导通,那么状态开关量S=1,否则状态开关量S=0; —每相功率开关器件导通状态,假设高压侧导通为1,低压侧导通是-1,高压侧和低压侧都不导通等于0,禁止高压侧和低压侧都导通; —三相逆变器功率器件导通压降,假设功率开关器件导通则导通压降等于 ,功率二极管导通则压降为 ,同一相高低压侧没有功率器件导通则压降等于0[5,6]。
3 无刷直流电机系统的仿真分析
无刷直流电动机控制系统实际上由电机本体,逆变器,驱动控制器三部分组成。本系统中直流电源通过电压源型三相桥式PWM逆变器向电机供电,只要根据位置检测信号触发导通对应的开关器件,就可获得与感应电势同相位的电流从而驱动电机运转[7]。
4 方波平顶宽度对转矩脉动的影响与消除
对波顶分别为1000和1200方波电机采用以下电机参数进行仿真研究:
自感—7mH;互感—3.8mH;反电动势系数—0.0288;转动惯量—1.6*10-4 ; 电阻—2.875 ;摩擦系数—0.001; 加载时间—0.5s;负載转矩—0.5 ;给定转速—1000r/min;
由图3、4可见,在方波电机的矢量控制中,反电动势依然表现出方波的特性,但是控制电流呈现正弦态势,属于正弦控制策略。
由图5、图6、图7可以看出:当平顶波的宽度大于1100时,采用矩形电流控制效果较好;当平顶波宽度小于1100时,采用正弦波电流驱动(矢量控制)可以有效地减小转矩的谐波,从而减小转矩脉动。
由图8可见,正弦控制下,方波电机的速度响应也可基本满足要求。因此在平顶波宽度较小的情况下,可采用正弦波电流控制代替矩形波控制。
图8平顶波宽度为100度时矢量控制转速响应
5 结论
本文主要研究了无刷直流电动机反电动势方波平顶宽度对电磁转矩脉动的影响,分析了不同的平顶宽度采取的不同控制方式,在波顶宽度小于110 0时,采用正弦控制策略较好。采用矢量控制分别对1200和1000的方波电机进行了仿真,并与传统的矩形波电流控制进行了比较,验证了结果的真实性。
参考文献
[1] Zhang Gaifan, Ma Weiming. Transient Analysis of Synchronous Machines[J]. Press of Naval University of Engineering P.R. China, 1999.
[2] 林勇军.永磁无刷直流电动机转矩脉动的研究[D]. 合肥:合肥工业大学. 硕士学位论文, 2003.
[3] 王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社, 2002:215-230.
[4] 谢宝昌,任永德.電机的DSP控制技术及其应用[M].北京.北京航空航天大学出版社,2002:249-278.
[5] 张争争,任永德,谢宝昌. 基于DSP的无刷直流电动机控制系统[J].微特电机,2001(2):34-36.
[6] 汪锐,许静宇. 基于DSP芯片的永磁无刷直流电机控制器[J].微电机,2000(4):27-29.
[7] Modeling, Simulation, and Analysis of Permanent-Magnet motor Drives, part Ⅰ: The Permanent-Magnet Synchronous Motor Drive[J]. IEEE Trans on Industry Application. 1989,25(2):265-273.