论文部分内容阅读
为了提高图像分割的运算速度,该文在将传统模糊C均值(FCM)聚类算法应用于图像自动分割的基础上,提出一种改进的快速图像分割算法。将图像从像素空间映射至其对应的灰度直方图特征空间,实现在特征空间进行数据聚类分析以减少聚类样本数量。依据灰度直方图特性,通过曲线拟合方法获得图像的聚类数及初始聚类中心。实验结果表明,在有效分割图像的基础上,该算法的运算迭代次数减少了约10%,运行时间减小了约6%。