论文部分内容阅读
目的:观察成骨分化后的去分化骨髓间质干细胞(differentiation osteogenic bone marrow mesenchymal stem cells,De-BMSCs)移植对前十字韧带(anterior cruciate ligament,ACL)重建术后腱骨界面骨形成的促进作用,并探索De-BMSCs成骨分化效应增强的分子机制。方法:从家兔胫骨和股骨中提取BMSCs,经成骨诱导分化后用普通培养基进行去分化培养制备De-BMSCs,鉴定De-BMSCs的干细胞特性。建立家兔ACL重建模型,分为3组:腱骨界面注射海藻酸钠凝胶(对照组);腱骨界面注射复合BMSCs海藻酸钠凝胶(BMSCs组);腱骨界面注射复合De-BMSCs海藻酸钠凝胶(De-BMSCs组)。术后4周和12周取膝关节标本,进行组织学、影像学、生物力学检测,评估腱骨界面骨形成情况。De-BMSCs体外成骨诱导分化,给予活化T细胞核转录因子1(nuclear factor of activated T cells 1,NFATc1)RNA干扰处理,检测成骨分化标志基因及Nanog/NFATc1/Osterix信号通路的表达,明确De-BMSCs成骨分化效应增强的分子机制。结果:De-BMSCs可向成骨、成脂、成软骨分化,具有干细胞特性(均n P<0.05)。术后4周De-BMSCs组BV/TV值为0.36±0.01,较对照组0.24±0.03和BMSCs组0.30±0.02明显增加(n P<0.05),最大负荷(40.34±1.19)N和刚度(20.67±2.14)N/mm较对照组[(14.88±2.74)N,(8.67±2.19)N/mm]和BMSCs组[(26.31±1.76)N,(13.81±2.14)N/mm]明显升高(均n P<0.05);术后12周De-BMSCs组BV/TV值0.47±0.02较对照组0.30 ± 0.02和BMSCs组0.35 ± 0.03明显增加(均n P<0.05),最大负荷(64.46±6.69)N和刚度(25.18±3.11)N/mm较对照组[(41.01±6.12)N,(11.59±2.54)N/mm]和BMSCs组[(48.21±4.12)N,(15.89±2.94)N/mm]明显升高(均n P<0.05);De-BMSCs成骨分化过程中,Nanog的表达增加(n P<0.05),NFATc1的表达上升且其与Osterix的相互作用增强(n P<0.05),成骨分化标志基因COL1A、OCN、OPN的表达增加(均n P<0.05)。n 结论:De-BMSCs移植可促进ACL重建后的腱骨界面骨形成,其作用机制可能是Nanog/NFATc1/Osterix信号通路介导了De-BMSCs成骨分化效应增强。“,”Objective:This study aimed to investigate the effect of differentiation osteogenic bone marrow mesenchymal stem cells (De-BMSCs) transplantation on the promotion of bone formation at the tendon-bone interface after anterior cruciate ligament reconstruction (ACLR), and further explored the molecular mechanism of the enhanced osteogenic effect of De-BMSCs.Methods:BMSCs from femur and tibia of New Zealand White rabbit were subjected to osteogenic induction and then cultured in no osteogenic factor medium; the obtained cell population was termed De-BMSCs. De-BMSCs were induced into osteo-, chondro-and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. ACLR model with a semitendinosus tendon were performed in 48 adult rabbits, three groups were established: control group with alginate gel injectionat the tendon-bone interface, BMSCs group with the injection of alginate gel containing BMSCs, De-BMSCs group with the injection of alginate gel containing De-BMSCs. At 4 and 12 weeks after surgery, rabbits in each group were sacrificed to evaluate tendon-bone healing by histologic staining, micro-CT examination, and biomechanical test. During osteogenic differentiation of De-BMSCs, si-RNA of nuclear factor of activated T cells 2 (NFATc2) si-RNA of nuclear factor of activated T cells 1 (NFATc1) were used to verify the molecular mechanism of enhanced osteogenic effect of De-BMSCs.Results:De-BMSCs exhibited some properties similar to BMSCs including multiple differentiation potential and cell surface marker. At 4 weeks after surgery, the BV/TV value of the De-BMSCs group 0.36±0.01 was significantly higher than that of the control group 0.24±0.03 and BMSCs group 0.30±0.02 (all n P<0.05), and the maximum load 40.34±1.19 N and stiffness 20.67±2.14 N/mm were significantly higher than those in the control group 14.88±2.74N, 8.67±2.19 N/mm and the BMSCs group 26.31±1.76 N, 13.81±2.14 N/mm (alln P<0.05). At 12 weeks after surgery, the BV/TV value of the De-BMSCs transplantation group 0.47±0.02 was significantly higher than that of the control group 0.30±0.02 and the BMSCs group 0.35±0.03 (alln P<0.05), and the maximum load 64.46±6.69 N and stiffness 25.18±3.11 N/mm were significantly higher than those in the control group 41.01±6.12 N, 11.59±2.54 N/mm and the BMSCs group 48.21±4.12 N, 15.89±2.94 N/mm (alln P<0.05). During the osteogenic differentiation of De-BMSCs, the expressions of Nanog and NFATc1 were synergistically increased which promoted interaction of NFATc1 and Osterix (n P< 0.05), resulting in the increased expression of osteoblast marker genessuch as COL1A, OCN, OPN (alln P< 0.05).n Conclusion:De-BMSCs transplantation could promote bone formation at the tendon-bone interface after ACLR,Nanog/NFATc1/Osterix signaling pathway mediated the enhancement of the osteogenic differentiation effect of De-BMSCs.