论文部分内容阅读
笔者根据多年教学实践,分析和总结了动点在直线、折线和曲线上运动问题的解题方法,“以静制动”的思想,将动态的数学问题有效转化为静态问题进行处理,不失为破解动态问题的关键途径.现将其基本方法介绍如下,希望能给读者一定的帮助.一、合理设置静态点的坐标,有效处理动点在直线上的动态问题动点在直线上的动态问题,主要探求函数(一次函数、二次函数、反比例函数等)图象上符合条件的点.高效处理这类问题需要学
Based on many years of teaching practice, the author analyzes and summarizes the problem solving methods of moving points on straight line, polyline and curve, and the idea of “using static braking” to effectively translate dynamic mathematical problems into static problems, It is a key way to solve dynamic problems now introduce its basic methods are as follows, hoping to give readers some help.First, a reasonable set of static point coordinates to effectively deal with moving point in a straight line on the dynamic problem Dynamic point in a straight line Problem, the main search function (a function, quadratic function, inverse function, etc.) on the image of the eligible points.Efficient treatment of such problems need to learn