论文部分内容阅读
在工业过程中,有很多重要变量往往无法在线检测,通常通过软测量方法进行估计,主元回归是其中1种常用方法。相比于主元,因子更具广泛意义,更能反映数据的本质特征。基于此,提出1种基于因子回归模型的软测量方法,先对过程日常运行数据进行因子分析,建立因子生成模型,并提取因子信息,然后建立因子与关键变量间的因子回归模型,在线应用时先将可测变量代入生成模型得到因子变量,然后将因子代入到因子回归模型,软测量出关键变量。将该方法应用到化工吸附分离过程中,比较了因子回归模型与主元回归模型的软测量效果,结果表明前者优于后者。