论文部分内容阅读
Among the various micro-pattern gas detectors (MPGD) that are available, the gas electron multiplier (GEM) detector is an attractive gas detector that has been used in particle physics experiments. However, the GEM detector usually needs thousands of preamplifier units for its large number of micro-pattern readout strips or pads, which leads to considerable difficulties and complexities for front end electronics (FEE). Nowadays, by making use of complementary metal-oxide semiconductor (CMOS)-based application specific integrated circuit (ASIC), it is fea- sible to integrate hundreds of preamplifier units and other signal process circuits in a small-sized chip, which can be bound to the readout strips or pads of a micro-pattern particle detector (MPPD). Therefore, CMOS ASIC may provide an ideal solution to the readout problem of MPPD. In this article, a triple GEM detector is constructed and one of its readout strips is connected to a CMOS charge-sensitive preamplifier chip. The chip was exposed to an 55Fe source of 5.9 keV X-ray, and the amplitude spectrum of the chip was tested, and it was found that the energy resolution was approximately 27%, which indicates that the chip can be used in triple GEM detectors.
Among the various micro-pattern gas detectors (MPGD) that are available, the gas electron multiplier (GEM) detector is an attractive gas detector that has been used in particle physics experiments. However, the GEM detector usually has thousands of pre-amplifier units for its large numbers of micro-pattern readout strips or pads, which leads to significant difficulties and complexities for front end electronics (FEE). Nowadays, by making use of complementary metal-oxide semiconductor (CMOS) -based application specific integrated circuits (ASICs) it is fea- sible to integrate hundreds of preamplifier units and other signal process circuits in a small-sized chip, which can be bound to the readout strips or pads of a micro-pattern particle detector (MPPD). an ideal solution to the readout problem of MPPD. In this article, a triple GEM detector is constructed and one of whose readout strips are connected to a CMOS charge-sensitive preamplifier chip. s exposed to an 55 Fe source of 5.9 keV X-ray, and the amplitude spectrum of the chip was tested, and it was found that the energy resolution was approximately 27%, which indicates that the chip can be used in triple GEM detectors.