论文部分内容阅读
随着物联网、大数据、人工智能等技术在安防领域不断取得突破性进展,公共视频监测系统近年来得到飞跃式发展.基于监控设备产生海量的非结构化视频数据,通过对监控视频中的行人轨迹进行分析和研究,可以挖掘出其中蕴含的行为模式,这对人群行为研究有着重要的研究价值.本文使用基于目标检测的多目标跟踪算法对地铁站出口,商场出口等场景中的行人移动轨迹进行提取,并在此基础上对行人的轨迹模式进行分析.针对行人轨迹的特点,在基于点密度聚类算法的基础上,提出并实现了基于轨迹相似度的轨迹聚类方法.结果表明,该方法能够有效的提取行人轨迹,并且从大规模轨迹数据中提取出轨迹模式.