论文部分内容阅读
目的:通过纳米羟基磷灰石/壳聚糖(N-HA/CS)复合骨形态发生蛋白(BMP)制备N-HA/CS-BMP复合人工骨,初步了解其植入后成骨与血管长入之间的关系,以及复合人工骨的孔径对再血管化的影响。方法:①材料的制备:采用共沉淀法、粒子沥滤法制备N-HA/CS多孔复合材料,孔隙率为85%,孔径为100 ̄500μm;通过N-HA/CS与氧化锌粉末按质量比为8∶1的方式混合制备成致密复合材料;然后分别复合BMP制备N-HA/CS-BMP复合人工骨。②实验过程:20只新西兰兔,在兔双后肢胫骨近段内侧用直径为3.5mm手摇钻头钻2个孔制备骨缺损模型。随机取15只兔,右侧植入2块多孔N-HA/CS-BMP复合人工骨为多孔N-HA/CS+BMP组,左侧植入2块致密N-HA/CS-BMP复合人工骨为致密N-HA/CS+BMP组;另5只兔右侧植入2块多孔N-HA/CS为多孔N-HA/CS组,左侧植入2块致密N-HA/CS为致密N-HA/CS组。③观察指标:术后4,6,8周麻醉后墨汁灌注处死动物取出标本,行大体观察、X射线检查、组织学观察、Ⅰ型胶原免疫组化染色、显微计算机图像采集分析,了解各组成骨能力、血管化程度、复合人工骨的成骨与血管化之间的相互关系。结果:①一般情况:术后死亡2只动物,2只一侧肢体发生骨折,伤口均于2周左右愈合,未发生感染。②X射线检查:术后4,6周显示植入孔明显,材料与骨之间有密度减低的透光环,8周材料与骨结合紧密,透光环消失。③组织学观察:术后4,6周的材料内的炎性反应较重,主要是白细胞和巨噬细胞,8周的材料内炎性反应减轻;8周壳聚糖大部分降解,从而显现出羟基磷灰石的多孔结构。④显微计算机图像分析:多孔N-HA/CS+BMP组血管密度和新生骨小梁面积大于其他3组(P<0.05),多孔N-HA/CS+BMP组血管密度与骨小梁面积呈直线正相关关系(r=0.483,P=0.003)。⑤Ⅰ型胶原免疫组织化学染色显示结果支持显微计算机图像分析结果。结论:复合人工骨的成骨与血管化呈直线正相关关系,复合人工骨的成骨与血管化在早期是随着材料降解而完成的,多孔结构在晚期对血管化和成骨有利。