论文部分内容阅读
为了提高认知无线网络的参数优化效果,提出了一种基于免疫优化的认知引擎参数调整算法。免疫克隆优化是一种有效的智能优化算法,适合求解认知无线网络的引擎参数调整问题。免疫优化中,变异概率影响着算法的搜索能力;利用正态云模型云滴的随机性和稳定倾向性特点,提出了一种基于云模型的自适应变异概率调整方法,并用于认知无线网络的参数优化。在多载波环境下对算法进行了仿真实验。结果表明,所提算法收敛速度较快,参数调整结果与对目标函数的偏好一致,能够实现认知引擎参数优化。