论文部分内容阅读
研究人脸识别是为了提高身份识别的明确性,具有直接、友好、方便等优点。但传统的基于PCA的人脸识别算法易受光照、表情、姿态等因素的干扰,从而导致其识别率的下降;鉴于此,提出了改进的NMF(非负矩阵分解)人脸图像识别算法。通过在NMF算法嵌入基予多超图的流形学习算法,可以在人脸图像的降维过程中最优地保持各图像间的流形信息,从而实现人脸识别算法对光照、表情、姿态等因素的鲁棒性。另外,为降低运算成本,提出了在测试阶段采用增量式的迭代求解算法。在人脸数据库ORL、YALE上进行试验的结果表明,文中提出的算法具有更高