论文部分内容阅读
作者利用两种复合浓差电池: C|Na_3AlF_6-Al_2O_3(sat)|Al-Al|NaF-AlF_3-Al_2O_3(sat)|C (Ⅰ) Al|Na_3AlF_6-Al_2O_3(sat)|C-C|NaF-AlF_3-Al_2O_3(sat)|C (Ⅱ) 首次实现了熔融态炼铝电解质分子比的直接测定。由于浓差电池Ⅰ、Ⅱ可对消温度、气氛、电极材料特性、电解质组成等因素的影响,其电动势只与分子比有关。由实验测定其间的关系为: E=aexp(b/x)+K (1) 式中:E为电池电动势;X为分子比:a、b、k、为常数。(1)的相关系数γ=0.9938,在α=0.001水平上显著。用该法还测定了工业电解质的分子比,其结果与用常规分析方法相比偏差较小。文中列出两种用于现场测定分子比探头原型图。
The authors make use of two kinds of compound concentration difference batteries: C | Na_3AlF_6-Al_2O_3 (sat) | Al-Al | NaF-AlF_3-Al_2O_3 sat | C (Ⅰ) Al | Na_3AlF_6-Al_2O_3 sat | CC | NaF-AlF_3- Al 2 O 3 (sat) | C (Ⅱ) was the first direct determination of the molecular ratio of aluminum in molten state. Due to the concentration of battery Ⅰ, Ⅱ can eliminate temperature, atmosphere, electrode material properties, electrolyte composition and other factors, the emf only with the molecular ratio. The relationship between the experimental determination of: E = aexp (b / x) + K (1) Where: E is the battery electromotive force; X is the molecular ratio: a, b, k, constant. (1), the correlation coefficient γ = 0.9938, which is significant at the α = 0.001 level. This method is also used to determine the molecular ratio of industrial electrolytes and the result is less biased than with conventional analytical methods. The article lists two prototype molecular probes for field measurements.