论文部分内容阅读
针对自然条件下人脸表情识别面临遮挡、光照、姿势变化等挑战,存在识别准确率低的问题,提出了一种新的深度学习网络模型用于人脸表情识别。以ResNet为基础网络,融合了瓶颈注意力机制以及全局二阶池化层,其中瓶颈注意力机制专注于表情重要特征的提取,全局二阶池化层度量表情特征之间的相关性,在此基础上通过联合正则化策略,平衡和改善特征数据分布情况,提高表情识别准确率。所提方法在2个公开数据集FER2013和CK+进行了测试及验证,最高准确率分别达到了74.227%和95.8%,性能优于诸多现存的主流方法,表明所