Non-negative matrix factorization based unmixing for principal component transformed hyperspectral d

来源 :Frontiers of Information Technology & Electronic Engineering | 被引量 : 0次 | 上传用户:fengjintao1111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Non-negative matrix factorization(NMF) has been widely used in mixture analysis for hyperspectral remote sensing. When used for spectral unmixing analysis, however, it has two main shortcomings:(1) since the dimensionality of hyperspectral data is usually very large, NMF tends to suffer from large computational complexity for the popular multiplicative iteration rule;(2) NMF is sensitive to noise(outliers), and thus the corrupted data will make the results of NMF meaningless. Although principal component analysis(PCA) can be used to mitigate these two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can also be applicable to data after principal component transformation. Based on this conclusion, we present a method to perform NMF in the principal component space, named ‘principal component NMF’(PCNMF). Experimental results show that PCNMF is both accurate and time-saving. Non-negative matrix factorization (NMF) has been widely used in mixture analysis for hyperspectral remote sensing. However, it has two main shortcomings: (1) since the dimensionality of hyperspectral data is usually very large, NMF (2) NMF is sensitive to noise (outliers), and thus the corrupted data will make the results of NMF meaningless. Although principal component analysis (PCA) can be used to mitigate these two problems, the transformed data will contain negative numbers, hindering the direct use of the multiplicative iteration rule of NMF. In this paper, we analyze the impact of PCA on NMF, and find that multiplicative NMF can also be applicable to data after Based on this conclusion, we present a method to perform NMF in the principal component space, named ’principal component NMF’ (PCNMF). Experimental re sults show that PCNMF is both accurate and time-saving.
其他文献
英语阅读是英语学习过程中的重要组成部分,同时随着新课程的改革进程,高中英语教学中对于阅读部分的重视程度也在加深。本文在介绍了高中英语阅读教学的现状基础上,提出了“支架
我国的传统经济增长模式在投入和消费方面都相对较高,影响了经济的长足性发展。要想实现我国经济增长的可持续性,必须从根本上改变这种传统模式,调整产业结构。只有不断提升
Bailey在1947年给出了著名的Bailey变换公式(公式略)。Bailey利用这个变换公式以及Bailey引理,得到了许多基本超几何级数的变换公式,同时也利用这些公式得到了一系列的Rogers-R
学位
据《北方园艺》2014年第17期《保水剂对“绿岭”核桃栽植成活及生长发育的影响》(作者张玲等)报道,以一级“绿岭”核桃嫁接苗为试材,地径1.5 cm,嫁接部位以上高度80~100 cm,
USB作为一种新型的接口技术在计算机应用的各个领域发挥着重要有作用。文章从电子商务应用平台出发,介绍了在电子商务中常用的安全技术及USB-Key(USB安全钥)技术,从而实现电
本文研究两类网络化控制系统.一类是在信息受限条件下基于观测器的连续混沌系统的同步.对于具有混沌形式的驱动系统和基于观测器的响应系统,通过一个有限容量的信道连接,设计
本文主要利用微分不等式的技巧(或称为上下解方法),在一定条件下证明几类不带小参数的非线性微分方程边值问题解的存在性,在此基础上通过构造高阶渐近解得出解的误差估计来研究几
学位
为了解转基因成分定量分析结果不确定度的主要贡献因素,提高转基因成分定量检测质量,用含转基因大豆GTS40-3-2样品进行了NOS终止子含量的测定,并对其测量不确定度进行了初步
抛物方程是描述物理现象的一类重要方程,差分方法和有限元方法是求其数值解的两类主要数值解法。而不论哪种方法最终都归结为大规模方程组的计算。当维数很大、精度要求很高时