论文部分内容阅读
提出了一种针对一类图像进行稀疏表示的字典训练方法,并证明了该算法的收敛性.该算法的几何解释是,以最少的超平面来逼近样本所在的一小块球冠.算法流程为聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,令字典能够更适应于样本的稀疏表示.该算法与传统的字典训练方法相比具有适应性强,对训练样本规模和字典规模要求低,收敛速度快,算法复杂度低等特点.利用该算法训练得到的字典用于压缩感知、图像去噪等实验表明,该字典具有很好的效果.