论文部分内容阅读
为解决协同过滤推荐中"稀疏"和"冷开始"问题,提高推荐精度,提出了基于隐式评分的推荐系统。首先建立项档案,采用BP神经网络模型分析用户的导航模式和行为模式,对已点击项进行预测评分,建立用户主观评价模型和用户偏好档案;然后预测用户对未点击项评分,形成比较稠密的用户预测评分矩阵,采用协同过滤推荐技术,产生有效推荐;最后提出基于项特征的谈判模型和谈判策略,支持对推荐结果的解释和客商之间的讨价还价。