论文部分内容阅读
在模式分类中,基于旋转不变范数的回归分类器(RRC)最近得到广泛的应用.然而RRC的稀疏重构是建立在全体训练样本之上,当训练样本的数量很大时,计算的时耗比较大.同时,对稀疏程度的过度追求也在一定程度上影响了分类性能.基于K最近邻分类器提出了一类局部的基于K最近邻的L2,1范数稀疏回归分类器(KNN-SRC),该分类器比全局的RRC计算速度快,同时,利用K最近邻点代替全体训练样本,在一定程上避免了非同类的相似样本对测试样本的过度稀疏表示,从而提高分类性能.KNN-SRC的分类性能在UCI的Wine数据