论文部分内容阅读
针对在小样本图像分类应用中,以向量空间作为输入的传统分类算法的不足,提出以张量理论为基础,结合模糊支持向量机思想的基于张量图像样本的模糊支持张量机分类器,利用张量表示图像样本,求解最优张量面。通过手写体数字图像样本实验仿真,验证该算法的性能,随后将其应用到羽绒菱节图像识别中进行对比,该算法较传统算法平均高出6.3%以上的识别率。实验证明该算法更适合应用于图像样本分类识别。