论文部分内容阅读
基于管道的方法是目前任务型对话系统的主要构建方式,在工业界具有广泛应用,而对话状态跟踪(dialogue state tracking,DST)是任务型对话系统中的核心任务。面对传统的方法在多领域场景下表现较差的问题,该文结合语言模型预训练的最新研究成果,该文提出了一种基于BERT的对话状态跟踪算法Q2SM(query to state model)。该模型的上游使用了基于BERT的句子表征与相似度交互的槽判定模块,下游使用了一种面向对话状态跟踪任务的自定义RNN:DST-RNN。在WOZ 2.0和Mul