论文部分内容阅读
为了实现对传统民族服饰图像文化内涵的自动挖掘,提出了基于字典学习的传统民族服饰图像多标签标注算法.该算法在原有相似系数结构不相关字典学习方法基础上,对重建系数判别能力进一步增强,实现多标签标注任务.首先,利用支持向量机(SVM)算法对重建系数进行线性分类;接着,为每一类别构建一个字典,同时对SVM分类错误的样本进行惩罚;然后,将字典与重建系数不断迭代求解;最后,利用测试样本重建误差和重建系数在分类器中的分类效果完成标签预测.实验结果证明了该方法性能上有所提升,并且在不同数据上的结果更加稳定.