论文部分内容阅读
针对间歇过程的非线性、多阶段特性,提出一种基于多阶段多向核熵成分分析(multistage-MKECA,MsMKEcAl的故障检测方法。针对间歇过程的多阶段特性,建立一种时序核熵主元关联度的矩阵相似性阶段划分方法,实现对间歇生产过程的多阶段划分;针对传统批次展开方式在线监控需要预估批次未来值的缺陷,进一步引入一种批次一变量三维数据展开方式建立每个阶段的MKECA非线性统计模型,实现对间歇过程的分阶段监控。最后对盘尼西林发酵过程开展仿真研究,结果表明所提方法能够比传统MKECA方法更为快速地进行故障检测。