论文部分内容阅读
在进行高光谱遥感影像监督分类过程中,结合高光谱数据非线性的特点和流形学习强大的非线性处理能力,提出一种基于拉普拉斯特征映射(LE)降维和最佳指数法(OIF)波段组合选择训练样本进行SVM分类的策略,首先对高光谱遥感影像波段进行优化,利用拉普拉斯特征映射法(LE)对波段优选后的影像进行降维,利用OIF选择波段组合叠加进行训练样本选择。在此基础上采用支持向量机(SVM)进行分类处理,取得了优于PCA的效果。实验证明了流形学习是一种行之有效的高光谱遥感数据特征提取方法。