论文部分内容阅读
针对证券市场内部结构的复杂性、外部因素的多变性,本文采用动态模糊神经网络(DFNN)进行金融股指预测。DFNN能够实现在线学习,并且参数估计与结构辨识同时进行;同时采用误差下降率(ERR)修剪技术,保证网络拓扑结构不会持续增长,避免了过拟合及过训练现象,确保了DFNN的泛化能力。本文以上证指数为例.通过与同样以高斯函数作为传递函数的RBF算法预测结果的比较和分析.表明DFNN预测上证指数的偏差较小,预测的方向准确性较高。通过DFNN模型提取的模糊规则对金融系统运行模式进行分析.为研究金融非线性系统辨识提供