论文部分内容阅读
矩阵分解因可以实现大规模数据处理而具有十分广泛的应用。非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种在约束矩阵元素为非负的条件下进行的分解方法。利用少量已知样本的标注信息和大量未标注样本,并施加稀疏性约束,构造了一种新的算法——基于稀疏约束的半监督非负矩阵分解算法。推导了其有效的更新算法,并证明了该算法的收敛性。在常见的人脸数据库上进行了验证,实验结果表明CNMFS算法相对于NMF和CNMF等算法具有较好的稀疏性和聚类精度。