论文部分内容阅读
针对无人机目标识别中因遥感图像模糊、成像距离远、目标图像占比小等使得目标识别准确度不高问题,提出了一种基于改进YOLOv5网络的方法.该方法通过改进损失函数、改进特征金字塔网络(FPN)结构和增加平衡系数来提高目标识别效果.实验结果表明,在相同训练条件下,相比原始YOLOv5网络,改进YOLOv5网络对目标占比小于5%的小目标正确识别率有较为显著的提升,对目标占比仅有1%的小目标正确识别率提升了9%;对各类别图像识别准确率都有所提升,均值平均精度达到了0.767,比原始YOLOv5网络提升了3.2%.